-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
297 lines (261 loc) · 13.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
Paper: "UTRNet: High-Resolution Urdu Text Recognition In Printed Documents" presented at ICDAR 2023
Authors: Abdur Rahman, Arjun Ghosh, Chetan Arora
GitHub Repository: https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition
Project Website: https://abdur75648.github.io/UTRNet/
Copyright (c) 2023-present: This work is licensed under the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)
"""
import os
import time
import random
import argparse
import torch
import time
import numpy as np
from tqdm import tqdm
import torch.utils.data
import torch.nn.init as init
import torch.optim as optim
from model import Model
from test import validation
from utils import Averager, Logger
from dataset import hierarchical_dataset, AlignCollate
from utils import CTCLabelConverter, AttnLabelConverter
def train(opt, device):
# opt.num_gpu = 8 # Multi-GPU Training -> Uncomment line 24 & line 63-64
logger = Logger(f'./saved_models/{opt.exp_name}/log_train.txt')
opt.device = device
opt.select_data = opt.select_data.split('-')
opt.batch_ratio = opt.batch_ratio.split('-')
# Load The Train Dataset
AlignCollate_train = AlignCollate(imgH=opt.imgH, imgW=opt.imgW)
train_dataset, train_dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt,rand_aug=True)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batch_size,
shuffle=True,
num_workers=int(opt.workers),
collate_fn=AlignCollate_train, pin_memory=False)
# """
logger.log('Device : {}'.format(device))
logger.log('-' * 80 + '\n')
logger.log("Training Dataset Loaded: ", train_dataset_log)
AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW)
valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt, rand_aug=False)
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=opt.batch_size,
shuffle=True,
num_workers=int(opt.workers),
collate_fn=AlignCollate_valid, pin_memory=False)
logger.log("Validation Dataset Loaded : ", valid_dataset_log)
logger.log('-' * 80 + '\n')
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
# Multi-GPU Training -> Uncomment line 24 & line 63-64
# if opt.num_gpu > 1:
# model = torch.nn.DataParallel(model, device_ids=range(opt.num_gpu))
logger.log('model input parameters', opt.imgH, opt.imgW, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
# weight initialization
for name, param in model.named_parameters():
if 'localization_fc2' in name:
logger.log(f'Skip {name} as it is already initialized')
continue
try:
if 'bias' in name:
init.constant_(param, 0.0)
elif 'weight' in name:
init.kaiming_normal_(param)
except Exception as e:
if 'weight' in name:
param.data.fill_(1)
continue
model = model.to(device)
model.train()
if opt.saved_model != '':
logger.log(f'loading pretrained model from {opt.saved_model}')
if opt.FT:
model.load_state_dict(torch.load(opt.saved_model), strict=False)
else:
model.load_state_dict(torch.load(opt.saved_model))
logger.log("Model:")
logger.log(model)
""" setup loss """
if 'CTC' in opt.Prediction:
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0
# loss averager
loss_avg = Averager()
# filter that only require gradient decent
filtered_parameters = []
params_num = []
for p in filter(lambda p: p.requires_grad, model.parameters()):
filtered_parameters.append(p)
params_num.append(np.prod(p.size()))
sum_params_num = sum(params_num)
logger.log(f'Trainable params num : {sum_params_num/1000000:.2f}M')
# [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]
# setup optimizer
if opt.adam:
optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
else:
optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
logger.log("Optimizer: ", optimizer)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
reduce_lr = [50,100] # epochs where you want to reduce the LR by 10
# Slowly decrease the learning rate from initial lr to 0 over the course of training
# scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.num_epochs, eta_min=0.01)
""" final options """
# print(opt)
opt_log = '------------ Options -------------\n'
args = vars(opt)
for k, v in args.items():
opt_log += f'{str(k)}: {str(v)}\n'
opt_log += '---------------------------------------\n'
logger.log(opt_log)
""" start training """
start_iter = 0
if opt.saved_model != '':
try:
start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
logger.log(f'continue to train, start_iter: {start_iter}')
except:
pass
start_time = time.time()
best_accuracy = -1
best_norm_ED = -1
iteration = start_iter
init_time = time.time()
for epoch in tqdm(range(opt.num_epochs)):
logger.log("="*20,"Epoch =",epoch+1,"="*20)
for i, (image_tensors, labels) in enumerate(tqdm(train_loader)):
#image_tensors, labels = train_dataset_batch.get_batch()
image = image_tensors.to(device)
# Cheking if correct inputs are being given)
# if os.path.exists("check_dir"):
# import shutil
# shutil.rmtree("check_dir")
# os.makedirs("check_dir")
# for var1 in range(image.size(0)):
# file_name_1 = "check_dir/" + str(iteration)+str(var1)+"label.txt"
# with open(file_name_1,"a", encoding="utf-8") as labelFile:
# labelFile.write((labels[var1]))
# img_normalized = image[var1]*0.5 + 0.5
# pilTrans = transforms.ToPILImage()(img_normalized).transpose(Image.Transpose.FLIP_LEFT_RIGHT)
# pilTrans.save(str("check_dir/" + str(iteration)+str(var1)+"image.png"))
text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
batch_size = image.size(0)
if 'CTC' in opt.Prediction:
preds = model(image)
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
preds = preds.log_softmax(2).permute(1, 0, 2)
cost = criterion(preds, text, preds_size, length)
else:
preds = model(image, text=text[:, :-1].to(device)) # align with Attention.forward
target = text[:, 1:].to(device) # without [GO] Symbol
cost = criterion(preds.view(-1, preds.shape[-1]).contiguous(), target.contiguous().view(-1))
model.zero_grad()
cost.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip) # gradient clipping with 5 (Default)
optimizer.step()
loss_avg.add(cost)
if epoch in reduce_lr:
scheduler.step()
logger.log(f'Learning rate reduced to {scheduler.get_lr()}')
# scheduler.step()
elapsed_time = time.time() - start_time
model.eval()
with torch.no_grad():
valid_loss, current_accuracy, current_norm_ED, _ = validation(
model, criterion, valid_loader, converter, opt, device)
model.train()
# training loss and validation loss
loss_log = f'[{epoch+1}/{opt.num_epochs}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
loss_avg.reset()
current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.2f}, {"Current_norm_ED":17s}: {current_norm_ED:0.4f}'
# keep best accuracy model (on valid dataset)
if current_accuracy > best_accuracy:
best_accuracy = current_accuracy
# torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_accuracy.pth')
if current_norm_ED > best_norm_ED:
best_norm_ED = current_norm_ED
torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.4f}, {"Best_norm_ED":17s}: {best_norm_ED:0.4f}'
loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
logger.log(loss_model_log + '\n')
end_time = time.time()
logger.log("Total time taken for training: " + str(end_time-init_time))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name', required=True ,help='Where to store logs and models')
parser.add_argument('--train_data', required=True, help='path to training dataset')
parser.add_argument('--valid_data', required=True, help='path to validation dataset')
parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=32, help='input batch size')
parser.add_argument('--num_epochs', type=int, default=100, help='Number of epochs to train for')
parser.add_argument('--valInterval', type=int, default=500, help='Interval between each validation')
parser.add_argument('--saved_model', default='', help="path to model to continue training")
parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning')
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is Adadelta)')
parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95')
parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5')
""" Data processing """
parser.add_argument('--select_data', type=str, default='/',
help='select training data (default is MJ-ST, which means MJ and ST used as training data)')
parser.add_argument('--batch_ratio', type=str, default='1',
help='assign ratio for each selected data in the batch')
parser.add_argument('--total_data_usage_ratio', type=str, default='1.0',
help='total data usage ratio, this ratio is multiplied to total number of data.')
parser.add_argument('--batch_max_length', type=int, default=100, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=400, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
""" Model Architecture """
parser.add_argument('--FeatureExtraction', type=str, default="HRNet", #required=True,
help='FeatureExtraction stage VGG|RCNN|ResNet|UNet|HRNet|Densenet|InceptionUnet|ResUnet|AttnUNet|UNet|VGG')
parser.add_argument('--SequenceModeling', type=str, default="DBiLSTM", #required=True,
help='SequenceModeling stage LSTM|GRU|MDLSTM|BiLSTM|DBiLSTM')
parser.add_argument('--Prediction', type=str, default="CTC", #required=True,
help='Prediction stage CTC|Attn')
parser.add_argument('--input_channel', type=int, default=1,
help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
""" GPU Selection """
parser.add_argument('--device_id', type=str, default=None, help='cuda device ID')
opt = parser.parse_args()
if opt.FeatureExtraction == "HRNet":
opt.output_channel = 32
os.makedirs(f'./saved_models/{opt.exp_name}', exist_ok=True)
""" vocab / character number configuration """
file = open("UrduGlyphs.txt","r",encoding="utf-8")
content = file.readlines()
content = ''.join([str(elem).strip('\n') for elem in content])
opt.character = content+" "
file.close()
""" Seed setting """
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed(opt.manualSeed)
cuda_str = 'cuda'
if opt.device_id is not None:
cuda_str = f'cuda:{opt.device_id}'
device = torch.device(cuda_str if torch.cuda.is_available() else 'cpu')
print("Device : ", device)
train(opt, device)