-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsub.py
412 lines (323 loc) · 14 KB
/
sub.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import numpy as np
from torchsummary import summary
from torchvision import transforms
from torchmetrics import Accuracy, Precision, Recall
################################################################################### Model 1
class FirstModel(nn.Module):
def __init__(self,num_classes,device,dim = 32):
super().__init__()
self.num_of_classes = num_classes
self.device = device
self.dim = dim
# Debugging
self.DEBUG = False
# Hyperparameters
self.num_epochs = 10
self.learning_rate = 0.001
# History while Training
self.model_loss_history = []
self.model_train_acc_history = []
self.model_val_acc_history = []
self.model_val_precision_history = []
self.model_val_recall_history = []
self.model_lr_history = []
# Model Attributes
self.criterion = nn.CrossEntropyLoss()
self.optimizer = None
self.accuracy = Accuracy(task= 'multiclass', num_classes=self.num_of_classes, average='macro').to(self.device)
self.precision = Precision(task= 'multiclass', num_classes=self.num_of_classes, average='macro').to(self.device)
self.recall = Recall(task= 'multiclass', num_classes=self.num_of_classes, average='macro').to(self.device)
# Model Architecture
self.feature_extract = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(in_channels = 32, out_channels = 64, kernel_size = 5, padding = 2),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2),
nn.Conv2d(in_channels = 64, out_channels = 128, kernel_size = 5, padding = 2),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2),
nn.Flatten(),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 1000),
nn.BatchNorm1d(1000),
nn.ReLU(),
nn.Linear(1000, 1000),
nn.BatchNorm1d(1000),
nn.ReLU(),
nn.Linear(1000, 1000),
nn.BatchNorm1d(1000),
nn.ReLU(),
nn.Linear(1000, 1000),
nn.BatchNorm1d(1000),
nn.ReLU(),
nn.Linear(1000, self.num_of_classes),
nn.BatchNorm1d(self.num_of_classes),
)
def forward(self, x):
x = self.feature_extract(x)
x = self.classifier(x)
return x
def predict(self, img):
'''
returns the predicted classes for the given images
'''
self.eval()
with torch.no_grad():
img = img.to(self.device)
output = self(img)
_, predicted = torch.max(output, 1)
return predicted
def eval_val(self, data_loader):
'''
returns accuracy, precision and recall
'''
self.eval()
with torch.no_grad():
for images, labels in data_loader:
images, labels = images.to(self.device), labels.to(self.device)
outputs = self(images)
self.accuracy(outputs, labels)
self.precision(outputs, labels)
self.recall(outputs, labels)
return self.accuracy.compute(), self.precision.compute(), self.recall.compute()
def train_model(self, train_loader, val_loader):
self.optimizer = optim.Adam(self.parameters(), lr=self.learning_rate)
for epoch in range(self.num_epochs):
self.train()
running_loss = 0.0
for i, (images, labels) in enumerate(train_loader):
images, labels = images.to(self.device), labels.to(self.device)
self.optimizer.zero_grad()
outputs = self(images)
loss = self.criterion(outputs, labels)
loss.backward()
self.optimizer.step()
running_loss += loss.item()
if i%100 == 0 and self.DEBUG:
print(" Step [{}/{}] Loss: {}".format(i, len(train_loader), loss.item()))
val_acc, val_precision, val_recall = self.eval_val(val_loader)
train_acc, _, _ = self.eval_val(train_loader)
self.model_loss_history.append(running_loss/len(train_loader))
self.model_train_acc_history.append(train_acc.item())
self.model_val_acc_history.append(val_acc.item())
self.model_val_precision_history.append(val_precision.item())
self.model_val_recall_history.append(val_recall.item())
self.model_lr_history.append(self.optimizer.param_groups[0]['lr'])
print(f'Epoch: {epoch+1}/{self.num_epochs}, Loss: {loss.item()},Train Acc: {train_acc}, Val Acc: {val_acc}, Val Precision: {val_precision}, Val Recall: {val_recall}')
print('Finished Training')
def plot_history(self):
# making two plots one for loss and other for accuracy
fig, axs = plt.subplots(2, 3, figsize=(15, 10))
fig.suptitle('Model Training History')
axs[0, 0].plot(self.model_loss_history)
axs[0, 0].set_title('Model Loss')
axs[0, 0].set_xlabel('Epochs')
axs[0, 0].set_ylabel('Loss')
axs[0, 1].plot(self.model_train_acc_history, label='Train')
axs[0, 1].plot(self.model_val_acc_history, label='Val')
axs[0, 1].set_title('Model Accuracy')
axs[0, 1].set_xlabel('Epochs')
axs[0, 1].set_ylabel('Accuracy')
axs[0, 1].legend()
axs[1, 0].plot(self.model_val_precision_history)
axs[1, 0].set_title('Model Precision')
axs[1, 0].set_xlabel('Epochs')
axs[1, 0].set_ylabel('Precision')
axs[1, 1].plot(self.model_val_recall_history)
axs[1, 1].set_title('Model Recall')
axs[1, 1].set_xlabel('Epochs')
axs[1, 1].set_ylabel('Recall')
axs[0, 2].plot(self.model_lr_history)
axs[0, 2].set_title('Learning Rate')
axs[0, 2].set_xlabel('Epochs')
axs[0, 2].set_ylabel('Learning Rate')
# axs[1, 2].axis('off')
plt.show()
def save_model(self):
torch.save(self.state_dict(),type(self).__name__+'.pth')
def print_summary(self):
summary(self, (3, self.dim, self.dim))
################################################################################### Model 2
class SecondModel(FirstModel):
def __init__(self,num_classes,device,dim = 32):
super().__init__(num_classes,device,dim)
self.dropout_ratio = .2
self.feature_extract = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=5, padding=2),
nn.BatchNorm2d(32),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(32, 64, kernel_size=5, padding=2),
nn.BatchNorm2d(64),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(64, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.MaxPool2d(kernel_size=2),
nn.Flatten()
)
self.classifier = nn.Sequential(
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, self.num_of_classes),
)
################################################################################### Model 3
class ThirdModel(FirstModel):
def __init__(self,num_classes,device,dim = 32):
super().__init__(num_classes,device,dim)
self.feature_extract = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
nn.BatchNorm2d(32),
nn.MaxPool2d(kernel_size=2),
nn.Dropout(p=0.2),
nn.Conv2d(in_channels = 32, out_channels = 64, kernel_size = 5, padding = 2),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2),
nn.Dropout(p=0.2),
nn.Conv2d(in_channels = 64, out_channels = 128, kernel_size = 5, padding = 2),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2),
nn.Dropout(p=0.2),
nn.Flatten(),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 1000),
nn.BatchNorm1d(1000),
nn.Dropout(0.5),
nn.ReLU(),
nn.Linear(1000, 1000),
nn.BatchNorm1d(1000),
nn.Dropout(0.5),
nn.ReLU(),
nn.Linear(1000, 1000),
nn.BatchNorm1d(1000),
nn.Dropout(0.5),
nn.ReLU(),
nn.Linear(1000, 1000),
nn.BatchNorm1d(1000),
nn.Dropout(0.5),
nn.ReLU(),
nn.Linear(1000, self.num_of_classes),
nn.BatchNorm1d(self.num_of_classes),
)
################################################################################### Model 4
class FourthModel(FirstModel):
def __init__(self,num_classes,device,dim = 32):
super().__init__(num_classes,device,dim)
self.feature_extract = nn.Sequential(
nn.Flatten(),
)
self.classifier = nn.Sequential(
nn.Linear(3*32*32, 1000),
nn.BatchNorm1d(1000),
nn.ReLU(),
nn.Linear(1000, 1000),
nn.BatchNorm1d(1000),
nn.ReLU(),
nn.Linear(1000, 1000),
nn.BatchNorm1d(1000),
nn.ReLU(),
nn.Linear(1000, 1000),
nn.BatchNorm1d(1000),
nn.ReLU(),
nn.Linear(1000, self.num_of_classes),
nn.BatchNorm1d(self.num_of_classes),
)
################################################################################### Model 5
def main():
# Hyperparameters for all models
batch_size = 32
num_of_classes = 10
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Dimensions for the input images
dim = 32
# Data augmentation and normalization for training
train_transform = transforms.Compose([
transforms.Resize((dim, dim)),
transforms.RandomRotation(20),
transforms.RandomHorizontalFlip(0.1),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)), # TODO: See what this does
])
# Just normalization for validation
test_transform = transforms.Compose([
transforms.Resize((dim, dim)),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)),
])
# Loading the Datasets CIFAR 10
train_ratio = 0.8
cifar_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True)
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=train_transform)
val_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=test_transform)
# Splitting the dataset into training and validation
train_size = int(train_ratio * len(cifar_dataset))
val_size = len(cifar_dataset) - train_size
indices = torch.randperm(len(cifar_dataset))
train_dataset = torch.utils.data.Subset(train_dataset, indices[:train_size])
val_dataset = torch.utils.data.Subset(val_dataset, indices[train_size:])
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
shuffle=True, num_workers=2 )
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size,
shuffle=False, num_workers=2)
# Loading the test dataset and creating a dataloader
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=test_transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
model_1 = FirstModel(num_of_classes,device,dim)
model_1.to(device)
model_1.print_summary()
model_2 = SecondModel(num_of_classes,device,dim)
model_2.to(device)
model_2.print_summary()
model_3 = ThirdModel(num_of_classes,device,dim)
model_3.to(device)
model_3.print_summary()
model_4 = FourthModel(num_of_classes,device,dim)
model_4.to(device)
model_4.print_summary()
models = [model_1, model_2, model_3, model_4]
results = []
print("Training the Model 1")
model_1.train_model(train_loader, val_loader)
acc, prec, rec = model_1.eval_val(test_loader)
print(f'Accuracy: {acc}, Precision: {prec}, Recall: {rec}')
results.append(([acc, prec, rec], model_1))
print("Training the Model 2")
model_2.train_model(train_loader, val_loader)
acc, prec, rec = model_2.eval_val(test_loader)
print(f'Accuracy: {acc}, Precision: {prec}, Recall: {rec}')
results.append(([acc, prec, rec], model_2))
print("Training the Model 3")
model_3.train_model(train_loader, val_loader)
acc, prec, rec = model_3.eval_val(test_loader)
print(f'Accuracy: {acc}, Precision: {prec}, Recall: {rec}')
results.append(([acc, prec, rec], model_3))
print("Training the Model 4")
model_4.train_model(train_loader, val_loader)
acc, prec, rec = model_4.eval_val(test_loader)
print(f'Accuracy: {acc}, Precision: {prec}, Recall: {rec}')
results.append(([acc, prec, rec], model_4))
# sort the results based on the acc
results = sorted(results, key=lambda x: x[0][0], reverse=True)
print("Here is the Ranking of the Models: ")
for data , model in results:
print(data[0] , type(model).__name__)
model.save_model()
if __name__ == '__main__':
print("Program Started")
main()