forked from Renovamen/Speech-Emotion-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOpensmile_Feature.py
142 lines (112 loc) · 4.26 KB
/
Opensmile_Feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import csv
import sys
import time
import pandas as pd
from sklearn.preprocessing import StandardScaler
from typing import Tuple
from sklearn.externals import joblib
from sklearn.model_selection import train_test_split
from Config import Config
'''
get_feature_opensmile():
Opensmile 提取一个音频的特征
输入:
file_path: 音频路径
输出:
该音频的特征向量
'''
def get_feature_opensmile(filepath: str):
# Opensmile 命令
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
cmd = 'cd ' + Config.OPENSMILE_PATH + ' && ./SMILExtract -C config/' + Config.CONFIG + '.conf -I ' + filepath + ' -O ' + BASE_DIR + '/' + Config.FEATURE_PATH + 'single_feature.csv'
print("Opensmile cmd: ", cmd)
os.system(cmd)
reader = csv.reader(open(BASE_DIR + '/' + Config.FEATURE_PATH + 'single_feature.csv','r'))
rows = [row for row in reader]
last_line = rows[-1]
return last_line[1: Config.FEATURE_NUM[Config.CONFIG] + 1]
'''
load_feature():
从 csv 加载特征数据
输入:
feature_path: 特征文件路径
train: 是否为训练数据
输出:
训练数据、测试数据和对应的标签
'''
def load_feature(feature_path: str, train: bool):
# 加载特征数据
df = pd.read_csv(feature_path)
features = [str(i) for i in range(1, Config.FEATURE_NUM[Config.CONFIG] + 1)]
X = df.loc[:,features].values
Y = df.loc[:,'label'].values
if train == True:
# 标准化数据
scaler = StandardScaler().fit(X)
# 保存标准化模型
joblib.dump(scaler, Config.MODEL_PATH + 'SCALER_OPENSMILE.m')
X = scaler.transform(X)
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state = 42)
return x_train, x_test, y_train, y_test
else:
# 标准化数据
# 加载标准化模型
scaler = joblib.load(Config.MODEL_PATH + 'SCALER_OPENSMILE.m')
X = scaler.transform(X)
return X
'''
get_data():
提取所有音频的特征: 遍历所有文件夹, 读取每个文件夹中的音频, 提取每个音频的特征,把所有特征保存在 feature_path 中
输入:
data_path: 数据集文件夹路径
feature_path: 保存特征的路径
train: 是否为训练数据
输出:
train = True:
训练数据、测试数据特征和对应的标签
train = False:
预测数据特征
'''
# Opensmile 提取特征
def get_data(data_path: str, feature_path: str, train: bool):
writer = csv.writer(open(feature_path, 'w'))
first_row = ['label']
for i in range(1, Config.FEATURE_NUM[Config.CONFIG] + 1):
first_row.append(str(i))
writer.writerow(first_row)
writer = csv.writer(open(feature_path, 'a+'))
print('Opensmile extracting...')
if train == True:
cur_dir = os.getcwd()
sys.stderr.write('Curdir: %s\n' % cur_dir)
os.chdir(data_path)
# 遍历文件夹
for i, directory in enumerate(Config.CLASS_LABELS):
sys.stderr.write("Started reading folder %s\n" % directory)
os.chdir(directory)
# label_name = directory
label = Config.CLASS_LABELS.index(directory)
# 读取该文件夹下的音频
for filename in os.listdir('.'):
if not filename.endswith('wav'):
continue
filepath = os.getcwd() + '/' + filename
# 提取该音频的特征
feature_vector = get_feature_opensmile(filepath)
feature_vector.insert(0, label)
# 把每个音频的特征整理到一个 csv 文件中
writer.writerow(feature_vector)
sys.stderr.write("Ended reading folder %s\n" % directory)
os.chdir('..')
os.chdir(cur_dir)
else:
feature_vector = get_feature_opensmile(data_path)
feature_vector.insert(0, '-1')
writer.writerow(feature_vector)
print('Opensmile extract done.')
# 一个玄学 bug 的暂时性解决方案
# 这里无法直接加载除了 IS10_paraling 以外的其他特征集的预测数据特征,非常玄学
if(train == True):
return load_feature(feature_path, train = train)