-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathda_tester_new.py
287 lines (244 loc) · 16 KB
/
da_tester_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import random
import pickle
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import os
from event_dataset import EventReader, SentenceReader, Parser
from da_models_new import AdversarialEventExtractor, GradReverse
from bert_embedding_extractor import BertFeatureExtractor
# Change train function to do alternating optimization
def train(model, train_batches, dev_batches, adv_batches, num_epochs, learning_rate, use_cuda, path):
event_criterion = nn.BCEWithLogitsLoss()
adv_criterion = nn.CrossEntropyLoss()
adv_step_optimizer = optim.Adam(model.adv_classifier.parameters(), lr=learning_rate)
event_step_optimizer = optim.Adam(model.event_extractor.parameters(), lr=learning_rate)
best_precision, best_recall, best_f1 = 0.0, 0.0, 0.0
for epoch in range(num_epochs):
total_event_loss = 0.0
total_adv_loss = 0.0
random.shuffle(adv_batches)
num_batches = len(train_batches)
for i, batch in enumerate(train_batches):
batch = [x.to('cuda') for x in batch]
adv_batch = [x.to('cuda') for x in adv_batches[i]]
adv_step_optimizer.zero_grad()
event_step_optimizer.zero_grad()
domain_outputs, event_outputs, event_domains = model(batch, adv_batch)
# Optimize adversarial classifier
adv_labels = adv_batch[-3]
adv_loss = adv_criterion(domain_outputs, adv_labels)
total_adv_loss += adv_loss.item()
adv_loss.backward()
adv_step_optimizer.step()
# Flush out gradients and compute second loss over events
adv_step_optimizer.zero_grad()
event_step_optimizer.zero_grad()
event_labels = batch[-3].contiguous().view(-1,1)
dom_labels = torch.ones(batch[0].size()[0], dtype=torch.int64)
if use_cuda:
dom_labels = dom_labels.cuda()
event_loss = adv_criterion(event_domains, dom_labels) + event_criterion(event_outputs, event_labels)
total_event_loss += event_loss.item()
event_loss.backward()
event_step_optimizer.step()
total_adv_loss /= num_batches
total_event_loss /= num_batches
print("Adversarial Loss at epoch {}: {}".format(epoch, total_adv_loss))
print("Event Loss at epoch {}: {}".format(epoch, total_event_loss))
print("Performance on development set:")
precision, recall, f1 = test(model, dev_batches, use_cuda, '')
if f1 > best_f1:
best_precision = precision
best_recall = recall
best_f1 = f1
torch.save(model.state_dict(), path)
model.train()
def test(model, dev_batches, use_cuda, path):
if path != '':
model.load_state_dict(torch.load(path))
model.eval()
predicted, gold, correct = 0.0, 0.0, 0.0
domain_acc = 0.0
# all_event_reps = []
for batch in dev_batches:
batch = [x.to('cuda') for x in batch]
labels = batch[-3]
labels = labels.contiguous().view(-1, 1)
domain_outputs, event_outputs, event_domains = model(batch, batch) # Remove event_reps after dumping BERT
_, event_domain_outputs = torch.max(event_domains, dim=1)
if use_cuda:
event_outputs = event_outputs.cpu().detach().numpy()
event_domain_outputs = event_domain_outputs.cpu().detach().numpy()
labels = labels.cpu().detach().numpy()
# event_reps = event_reps.cpu() # Comment out after dumping BERT
else:
event_domain_outputs = event_domain_outputs.numpy()
# all_event_reps.append(event_reps)
domain_acc += np.sum(event_domain_outputs == np.ones(event_domain_outputs.shape[0])) / event_domain_outputs.shape[0]
cur_correct, cur_pred, cur_gold = calculate_batch_f1(event_outputs.tolist(), labels.tolist())
predicted += cur_pred
gold += cur_gold
correct += cur_correct
# pickle.dump(all_event_reps, open('DABERT_reps_rec.pkl', 'wb'))
# print('Dumped records DA-BERT reps')
precision = correct / predicted if predicted != 0 else 0.0
recall = correct / gold if gold != 0 else 0.0
f1 = (2 * precision * recall) / (precision + recall) if precision + recall != 0 else 0.0
domain_acc /= len(dev_batches)
print("Precision: {}".format(precision))
print("Recall: {}".format(recall))
print("F1 Score: {}".format(f1))
print("Domain Prediction Accuracy: {}".format(domain_acc))
return precision, recall, f1
def calculate_batch_f1(preds, labels):
predicted = 0.0
gold = 0.0
correct = 0.0
for pred, label in zip(preds, labels):
pred = 0 if pred[0] <= 0.0 else 1
label = label[0]
if pred == 1:
predicted += 1
if label == 1:
gold += 1
if pred == label and label == 1:
correct += 1
return correct, predicted, gold
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", action="store", type=str, required=True, help="Directory containing source labeled data files")
parser.add_argument("--target_dir", action="store", type=str, required=True, help="Directory containing target data files")
parser.add_argument("--train_file", action="store", type=str, required=True, help="File containing list of train documents")
parser.add_argument("--dev_file", action="store", type=str, required=True, help="File containing list of dev documents")
parser.add_argument("--test_file", action="store", type=str, required=True, help="File containing list of test documents")
parser.add_argument("--model_path", action="store", type=str, required=True, help="Path to store/ load trained model")
parser.add_argument("--emb_file", action="store", type=str, default=None, help="Path to pretrained embedding file")
parser.add_argument("--batch_size", action="store", type=int, default=16, help="Batch size")
parser.add_argument("--emb_size", action="store", type=int, default=100, help="Embedding size")
parser.add_argument("--hidden_size", action="store", type=int, default=100, help="Hidden size for BiLSTM")
parser.add_argument("--adv_coeff", action="store", type=float, default=1.0, help="Constant to control weight given to domain suppresion")
parser.add_argument("--adv_size", action="store", type=int, default=100, help="Hidden size for adversarial classifier")
parser.add_argument("--adv_layers", action="store", type=int, default=3, help="Number of layers for adversarial classifier")
parser.add_argument("--num_domains", action="store", type=int, default=2, help="Number of domains")
parser.add_argument("--dropout", action="store", type=float, default=0.5, help="Dropout")
parser.add_argument("--num_epochs", action="store", type=int, default=1000, help="Number of epochs")
parser.add_argument("--learning_rate", action="store", type=float, default=0.001, help="Learning rate")
parser.add_argument("--bidir", action="store_false", default=True, help="Specify whether LSTM should be bidirectional")
parser.add_argument("--seed", action="store", type=int, default=0, help="Random seed")
parser.add_argument("--model", action="store", type=str, default="word", help="Specify type of features to be used in model")
parser.add_argument("--do_train", action="store_true")
parser.add_argument("--do_eval", action="store_true")
parser.add_argument("--save_path", action="store", type=str, default=None, help="Path to load BERT representations from")
parser.add_argument("--suffix", action="store", type=str, default=None, help="Dataset name suffix")
args = parser.parse_args()
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
use_cuda = torch.cuda.is_available()
reader = EventReader()
parser = Parser()
train_sentences, train_events = reader.read_events(args.data_dir, args.train_file)
dev_sentences, dev_events = reader.read_events(args.data_dir, args.dev_file)
test_sentences, test_events = reader.read_events(args.data_dir, args.test_file)
# train_sentences, train_events = train_sentences[:50], train_events[:50]
# dev_sentences, dev_events = dev_sentences[:50], dev_events[:50]
# test_sentences, test_events = test_sentences[:50], test_events[:50]
train_parse = parser.parse_sequences(train_sentences)
dev_parse = parser.parse_sequences(dev_sentences)
test_parse = parser.parse_sequences(test_sentences)
# Read in new-domain data, create batches and construct vocab over that
sent_reader = SentenceReader()
unlabeled_sents, unlabeled_domains = sent_reader.read_unlabeled_sents(args.target_dir)
labeled_sents, labeled_domains = sent_reader.read_labeled_sents(train_sentences)
# unlabeled_sents = unlabeled_sents[:50]
# unlabeled_domains = unlabeled_domains[:50]
# Parse raw sentences
labeled_parse = parser.parse_sequences(labeled_sents)
unlabeled_parse = parser.parse_sequences(unlabeled_sents)
combined = list(zip(unlabeled_parse, unlabeled_sents))
random.shuffle(combined)
unlabeled_parse, unlabeled_sents = zip(*combined)
unlabeled_parse = list(unlabeled_parse)
unlabeled_sents = list(unlabeled_sents)
adv_sents = unlabeled_sents[:len(labeled_sents)] + labeled_sents
adv_parse = unlabeled_parse[:len(labeled_sents)] + labeled_parse
adv_domains = unlabeled_domains[:len(labeled_sents)] + labeled_domains
sent_vocab = reader.construct_vocab(train_sentences + dev_sentences + test_sentences + unlabeled_sents)
pos_vocab = reader.construct_vocab(train_parse + dev_parse + test_parse + unlabeled_parse)
label_vocab = {"O": 0, "EVENT": 1}
use_shared_vocab = True
if args.do_train:
pickle.dump(pos_vocab, open(args.model_path+"_posvocab_{}.pkl".format(args.seed), "wb"))
if not use_shared_vocab:
pickle.dump(sent_vocab, open(args.model_path+"_vocab_{}.pkl".format(args.seed), "wb"))
else:
sent_vocab = pickle.load(open("../models/shared_vocab_news_lit.pkl".format(args.seed), "rb"))
elif args.do_eval:
pos_vocab = pickle.load(open(args.model_path+"_posvocab_{}.pkl".format(args.seed), "rb"))
if not use_shared_vocab:
sent_vocab = pickle.load(open(args.model_path+"_vocab_{}.pkl".format(args.seed), "rb"))
else:
sent_vocab = pickle.load(open("../models/shared_vocab_news_lit.pkl".format(args.seed), "rb"))
int_train_sents = reader.construct_integer_sequences(train_sentences, sent_vocab)
int_train_labels = reader.construct_integer_sequences(train_events, label_vocab)
int_dev_sents = reader.construct_integer_sequences(dev_sentences, sent_vocab)
int_dev_labels = reader.construct_integer_sequences(dev_events, label_vocab)
int_test_sents = reader.construct_integer_sequences(test_sentences, sent_vocab)
int_test_labels = reader.construct_integer_sequences(test_events, label_vocab)
int_train_parse = reader.construct_integer_sequences(train_parse, pos_vocab)
int_dev_parse = reader.construct_integer_sequences(dev_parse, pos_vocab)
int_test_parse = reader.construct_integer_sequences(test_parse, pos_vocab)
int_adv_sents = reader.construct_integer_sequences(adv_sents, sent_vocab)
int_adv_parse = reader.construct_integer_sequences(adv_parse, pos_vocab)
train_batches, dev_batches, test_batches, adv_batches = [], [], [], []
if args.model == "word":
train_batches = reader.create_padded_batches(int_train_sents, int_train_labels, args.batch_size, use_cuda, True)
dev_batches = reader.create_padded_batches(int_dev_sents, int_dev_labels, args.batch_size, use_cuda, False)
test_batches = reader.create_padded_batches(int_test_sents, int_test_labels, args.batch_size, use_cuda, False)
adv_batches = sent_reader.create_padded_batches(int_adv_sents, adv_domains, args.batch_size, use_cuda, True)
elif args.model == "pos":
train_batches = reader.create_pos_padded_batches(int_train_sents, int_train_parse, int_train_labels, args.batch_size, use_cuda, True)
dev_batches = reader.create_pos_padded_batches(int_dev_sents, int_dev_parse, int_dev_labels, args.batch_size, use_cuda, False)
test_batches = reader.create_pos_padded_batches(int_test_sents, int_test_parse, int_test_labels, args.batch_size, use_cuda, False)
adv_batches = sent_reader.create_pos_padded_batches(int_adv_sents, int_adv_parse, adv_domains, args.batch_size, use_cuda, True)
elif args.model.startswith("bert"):
# feature_extractor = BertFeatureExtractor("-1,-2,-3,-4")
# train_sent_berts = feature_extractor.bertify_sequences(train_sentences, max_seq_length=450)
# dev_sent_berts = feature_extractor.bertify_sequences(dev_sentences, max_seq_length=450)
# test_sent_berts = feature_extractor.bertify_sequences(test_sentences, max_seq_length=450)
# adv_sent_berts = feature_extractor.bertify_sequences(adv_sents, max_seq_length=450)
train_batches = [[x.to('cpu') for x in y] for y in pickle.load(open(os.path.join(args.save_path, "bert_train_batches_{}.pkl".format(args.suffix)), "rb"))]
dev_batches = [[x.to('cpu') for x in y] for y in pickle.load(open(os.path.join(args.save_path, "bert_dev_batches_{}.pkl".format(args.suffix)), "rb"))]
test_batches = [[x.to('cpu') for x in y] for y in pickle.load(open(os.path.join(args.save_path, "bert_test_batches_{}.pkl".format(args.suffix)), "rb"))]
adv_batches = [[x.to('cpu') for x in y] for y in pickle.load(open(os.path.join(args.save_path, "bert_adv_batches_{}.pkl".format(args.suffix)), "rb"))]
print('Loaded batches')
# train_batches = reader.create_padded_batches(train_sent_berts, int_train_labels, args.batch_size, use_cuda, True, True)
# dev_batches = reader.create_padded_batches(dev_sent_berts, int_dev_labels, args.batch_size, use_cuda, False, True)
# test_batches = reader.create_padded_batches(test_sent_berts, int_test_labels, args.batch_size, use_cuda, False, True)
# adv_batches = sent_reader.create_padded_batches(adv_sent_berts, adv_domains, args.batch_size, use_cuda, True, True)
# suffix = "timebank" if "timebank" in args.data_dir else "litbank"
# train_batches = [[x.to('cpu') for x in y] for y in pickle.load(open("bert_train_batches_{}.pkl".format(suffix), "rb"))]
# dev_batches = [[x.to('cpu') for x in y] for y in pickle.load(open("bert_dev_batches_{}.pkl".format(suffix), "rb"))]
# test_batches = [[x.to('cpu') for x in y] for y in pickle.load(open("bert_test_batches_{}.pkl".format(suffix), "rb"))]
# adv_batches = [[x.to('cpu') for x in y] for y in pickle.load(open("bert_adv_batches_{}.pkl".format(suffix), "rb"))]
# print(len(train_batches))
if args.model == 'word':
model = AdversarialEventExtractor(len(list(sent_vocab.keys())), args.emb_size, args.hidden_size, 1, args.adv_size, args.adv_layers, args.num_domains, args.adv_coeff, args.dropout, args.bidir, args.model)
elif args.model == 'pos':
model = AdversarialEventExtractor(len(list(sent_vocab.keys())), args.emb_size, args.hidden_size, 1, args.adv_size, args.adv_layers, args.num_domains, args.adv_coeff, args.dropout, args.bidir, args.model, pos_vocab_size=len(list(pos_vocab.keys())))
elif args.model.startswith('bert'):
print('Embedding size: {}'.format(train_batches[0][0].size()[-1]))
model = AdversarialEventExtractor(10000, train_batches[0][0].size()[-1], args.hidden_size, 1, args.adv_size, args.adv_layers, args.num_domains, args.adv_coeff, args.dropout, args.bidir, args.model)
if args.emb_file is not None:
model.event_extractor.rep_learner.load_embeddings(args.emb_file, sent_vocab)
if use_cuda:
model = model.cuda()
if args.do_train:
train(model, train_batches, dev_batches, adv_batches, args.num_epochs, args.learning_rate, use_cuda, args.model_path+"_{}.pth".format(args.seed))
if args.do_eval:
test(model, test_batches, use_cuda, args.model_path+"_{}.pth".format(args.seed))
else:
test(model, test_batches, use_cuda, args.model_path+"_{}.pth".format(args.seed))