forked from PR-Proj/Leaf-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKNN_2.m
143 lines (122 loc) · 4.85 KB
/
KNN_2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
%Assignment 4 Q1 Gagan Khanijau 2011046
% clc
% clear
%%data loading and division
No_of_Samples= 1600;
No_of_features= size (teh,2)-1 ;
No_of_classes=100;
DataSet = d; %importdata('E:\datat\data.txt');
Indices_crossValidated= crossvalind('Kfold',No_of_Samples,2);
%creating traing and testing matrices
% DataSet_train = zeros(size(trh,1),No_of_features+1);
% DataSet_test = zeros(size(teh,1),No_of_features+1);
% r = randi([1 16],1,2);
% for i=1:No_of_Samples
% ndx= mod(i,16);
% ndx(ndx == 0) = 16;
% if ndx ~= r(1) && ndx ~=r(2)
% DataSet_train(i,1:No_of_features+1) = DataSet(i,1:No_of_features+1);
% else
% DataSet_test(i,1:No_of_features+1) = DataSet(i,1:No_of_features+1);
% end
% end
%
% DataSet_train(all(~DataSet_train,2), : ) = [];
% DataSet_test( all(~DataSet_test,2), : ) = [];
DataSet_train= trh;
DataSet_test=teh;
%random initial centres k=No_of_classes
InitialRandomCentres= randperm(size(trh,1),No_of_classes);
CentreFeatures= zeros(No_of_classes,No_of_features);
% counter= 1;
for i=1:No_of_classes
CentreFeatures(i,1:No_of_features)= DataSet_train(InitialRandomCentres(i),2:No_of_features + 1);
% CentreFeatures(i,1:No_of_features)= DataSet_train(counter,2:No_of_features + 1);
% counter= counter+14;
end
% CentreFeatures(1,1:4)= DataSet_train(InitialRandomCentres(1),2:5);
% CentreFeatures(2,1:4)= DataSet_train(InitialRandomCentres(2),2:5);
% CentreFeatures(3,1:4)= DataSet_train(InitialRandomCentres(3),2:5);
Train_assignedCluster= zeros(size(trh,1),1);
%stopping flag
flag= 1;
%algorithm k means
while(flag)
flag=0;
for i = 1:size(trh,1)
DistanceFromCentres= zeros(No_of_classes,1);
for j=1:No_of_classes
DistanceFromCentres(j)= norm(DataSet_train(i,2:No_of_features + 1)- CentreFeatures(j,1:No_of_features));
end
% DistanceFromCentres(1)= norm(DataSet_train(i,2:5)- CentreFeatures(1,1:4));
% DistanceFromCentres(2)= norm(DataSet_train(i,2:5)- CentreFeatures(2,1:4));
% DistanceFromCentres(3)= norm(DataSet_train(i,2:5)- CentreFeatures(3,1:4));
[sortedValues, sortedIndex]= sort(DistanceFromCentres,'ascend');
if Train_assignedCluster(i)~=sortedIndex(1)
Train_assignedCluster(i)=sortedIndex(1);
flag=1;
end
end
CentreFeatures= zeros(No_of_classes,No_of_features);
PointsinCluster=zeros(No_of_classes,1);
for j=1:size(trh,1)
CentreFeatures(Train_assignedCluster(j),:) = CentreFeatures(Train_assignedCluster(j),:) + DataSet_train(j,2:No_of_features + 1);
PointsinCluster(Train_assignedCluster(j))=PointsinCluster(Train_assignedCluster(j))+1;
end
for j=1:No_of_classes
CentreFeatures(j,:)= CentreFeatures(j,:)/PointsinCluster(j);
end
% CentreFeatures(1,:)= CentreFeatures(1,:)/PointsinCluster(1);
% CentreFeatures(2,:)= CentreFeatures(2,:)/PointsinCluster(2);
% CentreFeatures(3,:)= CentreFeatures(3,:)/PointsinCluster(3);
end
%%training data accuracy
TrainingFrequencyMatrix=zeros(No_of_classes);
for i=1:size(trh,1)
TrainingFrequencyMatrix(Train_assignedCluster(i),DataSet_train(i))=TrainingFrequencyMatrix(Train_assignedCluster(i),DataSet_train(i))+1;
end
TrainingOutputLabels= zeros(size(trh,1),1);
for i=1:size(trh,1)
[val,ndx]=max(TrainingFrequencyMatrix(Train_assignedCluster(i),:));
TrainingOutputLabels(i)= ndx;
end
Correct=0;
for i=1:size(trh,1)
if TrainingOutputLabels(i)==DataSet_train(i,1)
Correct=Correct+1;
end
end
AccuracyTraining = Correct/size(trh,1);
Training_Error = 1- AccuracyTraining
%plotconfusion(training_data(:,1),train_outputLbls)
%%testing data accuracy
Test_AssignedCluster= zeros(size(teh,1),1);
for i = 1:size(teh,1)
DistanceFromCentres= zeros(No_of_classes,1);
for j=1:No_of_classes
DistanceFromCentres(j)= norm(DataSet_test(i,2:No_of_features + 1)- CentreFeatures(j,1:No_of_features));
end
% DistanceFromCentres(1)= norm(DataSet_test(i,2:5)- CentreFeatures(1,1:4));
% DistanceFromCentres(2)= norm(DataSet_test(i,2:5)- CentreFeatures(2,1:4));
% DistanceFromCentres(3)= norm(DataSet_test(i,2:5)- CentreFeatures(3,1:4));
[sortedValues, sortedIndex]= sort(DistanceFromCentres,'ascend');
Test_AssignedCluster(i)=sortedIndex(1);
end
TestingFrequencyMatrix=zeros(No_of_classes);
for i=1:size(teh,1)
TestingFrequencyMatrix(Test_AssignedCluster(i),DataSet_test(i))=TestingFrequencyMatrix(Test_AssignedCluster(i),DataSet_test(i))+1;
end
TestingOutputLabels= zeros(size(teh,1),1);
for i=1:size(teh,1)
[val,ndx]=max(TestingFrequencyMatrix(Test_AssignedCluster(i),:));
TestingOutputLabels(i)= ndx;
end
Correct=0;
for i=1:size(teh,1)
if TestingOutputLabels(i)==DataSet_test(i,1)
Correct=Correct+1;
end
end
accuracytest = Correct/size(teh,1);
Testing_Error= 1-accuracytest
%plotconfusion(testing_data(:,1),test_outputLbls)