-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathditehrnet_30_mpii_256x256.py
149 lines (140 loc) · 4.1 KB
/
ditehrnet_30_mpii_256x256.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval=1)
evaluation = dict(interval=10, metric='PCKh', key_indicator='PCKh')
optimizer = dict(
type='Adam',
lr=2e-3,
)
optimizer_config = dict(grad_clip=None)
# optimizer_config = dict(type='GradientCumulativeOptimizerHook', cumulative_iters=4)
# learning policy
lr_config = dict(
policy='step',
# warmup=None,
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 260
log_config = dict(
interval=50,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
channel_cfg = dict(
num_output_channels=16,
dataset_joints=16,
dataset_channel=list(range(16)),
inference_channel=list(range(16)))
# model settings
model = dict(
type='TopDown',
pretrained=None,
backbone=dict(
type='DiteHRNet',
in_channels=3,
with_cp=False,
extra=dict(
stem=dict(stem_channels=32, out_channels=32),
num_stages=3,
stages_spec=dict(
num_modules=(3, 8, 3),
num_branches=(2, 3, 4),
num_blocks=(2, 2, 2),
with_fuse=(True, True, True),
num_channels=(
(40, 80),
(40, 80, 160),
(40, 80, 160, 320),
)),
with_head=True,
)),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=40,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[256, 256],
heatmap_size=[64, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
use_gt_bbox=True,
bbox_file=None,
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=30,
scale_factor=0.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=[
'img',
],
meta_keys=['image_file', 'center', 'scale', 'rotation', 'flip_pairs']),
]
test_pipeline = val_pipeline
data_root = 'data/mpii'
data = dict(
samples_per_gpu=32,
workers_per_gpu=6,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
pin_memory=True,
train=dict(
type='TopDownMpiiDataset',
ann_file=f'{data_root}/annotations/mpii_train.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=train_pipeline),
val=dict(
type='TopDownMpiiDataset',
ann_file=f'{data_root}/annotations/mpii_val.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline),
test=dict(
type='TopDownMpiiDataset',
ann_file=f'{data_root}/annotations/mpii_val.json',
img_prefix=f'{data_root}/images/',
data_cfg=data_cfg,
pipeline=val_pipeline),
)