-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
363 lines (295 loc) · 12.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from graph import gen_graph
# function used to adjust adjacency and produce bases_template
def normalize_undigraph(A):
Dl = torch.sum(A, 0)
num_node = A.shape[0]
Dn = torch.zeros((num_node, num_node))
for i in range(num_node):
if Dl[i] > 0:
Dn[i, i] = Dl[i] ** (-0.5)
DAD = torch.matmul(torch.matmul(Dn, A), Dn)
return DAD
def A2normed_scaled_L(A):
"""
From original A(not A+I) to normalized, rescaled Graph Laplacian
"""
## L = I - D^-0.5 * A * D^-0.5
normed_L = torch.eye(A.shape[0]) - normalize_undigraph(A)
## L_ = L * (2/eigval_max) - I
# eigenvalue: fetch the real part
lambda_max = 1.02 * torch.max(torch.eig(normed_L, eigenvectors=False)[0][:, 0])
normed_rescaled_L = normed_L * (2/lambda_max) - torch.eye(A.shape[0])
return normed_rescaled_L
def k_th_order_A(order, A):
"""
modify A to incorporate the right order of neighbors
:param: A
:return: new A
"""
if order == 0:
return torch.eye(A.shape[1]).float()
A_total = torch.zeros_like(A)
for i in range(1, order + 1):
A_total += A.matrix_power(i)
return (A_total != 0).float()
class GraphConv_Bases_Shared(nn.Module):
def __init__(self, in_channels, out_channels, level, bias=True,
order_list=[1], num_bases=1, gcn_type='GCN_Bases', graph_type='ring'):
super(GraphConv_Bases_Shared, self).__init__()
# import pdb; pdb.set_trace()
# bases hyper-parameter
assert gcn_type == 'GCN_Bases'
assert order_list == [1]
assert num_bases == 1
# assert graph_type == 'chain'
self.gcn_type = gcn_type
self.num_bases = num_bases
self.order_list = order_list
self.graph_type = graph_type
## get graph
print('using {} graph'.format(self.graph_type))
A_ = gen_graph(level=level, graph_type=self.graph_type).float()
self.num_nodes = A_.shape[0]
## bases with shape [3], used for chain graph
self.bases = nn.Parameter(torch.Tensor(3))
in_size = 3 * self.num_nodes * 1.0
std_ = math.sqrt(1. / in_size)
nn.init.normal_(self.bases, std=std_)
## define coeff operation,
## for three types of GCN, this is the same
self.coeff_conv = nn.Conv1d(
in_channels=self.num_bases*in_channels,
out_channels=out_channels,
kernel_size=1,
bias=False,
)
## bias
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
n = in_channels * self.num_bases
stdv = 1. / math.sqrt(n)
self.bias.data.uniform_(-stdv, stdv)
else:
self.register_parameter('bias', None)
def build_local_filter(self,):
## from [3] to tri-diagonal matrix
bases_matrix = []
for i in range(self.num_nodes):
if i == 0:
bases_matrix.append(F.pad(self.bases[1:], (0,self.num_nodes-2)))
elif i == self.num_nodes-1:
bases_matrix.append(F.pad(self.bases[:-1], (self.num_nodes-2,0)))
else:
bases_matrix.append(F.pad(self.bases, (i-1, self.num_nodes-2-i)))
"""
Remember: each bases is a column vector of whole matrix
"""
# pdb.set_trace()
bases_matrix = torch.stack(bases_matrix, dim=1)
return bases_matrix
def forward(self, input):
N, in_channels, num_nodes = input.shape
## first step in dcf
bases_matrix = self.build_local_filter()
features_bases = torch.matmul(input, bases_matrix)
## second step, with shape [N, out_channels, num_nodes]
features_bases = self.coeff_conv(features_bases)
## add bias
features_bases += self.bias.unsqueeze(-1)
return features_bases
class GraphConv_Bases(nn.Module):
def __init__(self, in_channels, out_channels, level, bias=True,
order_list=(1), num_bases=1, gcn_type='GCN_Bases', graph_type='ring'):
super(GraphConv_Bases, self).__init__()
# bases hyper-parameter
assert gcn_type in ('GCN_Bases', 'GCN', 'ChebNet')
assert len(order_list) == num_bases
self.gcn_type = gcn_type
self.num_bases = num_bases
self.order_list = order_list
self.graph_type = graph_type
## get graph
print('using {} graph'.format(self.graph_type))
A_ = gen_graph(level=level, graph_type=self.graph_type).float()
# get bases_template from A' and order_list, with shape [num_bases, V, V]
bases_template = self.get_bases_template(A_)
self.register_buffer("bases_template", bases_template)
## create bases_mask, with shape [num_bases, V, V]
if self.gcn_type == 'GCN_Bases':
self.bases_mask = nn.Parameter(torch.Tensor(*(self.bases_template.shape)))
# init bases, 3: avg. support size
in_size = self.num_bases * 3 * self.bases_template.shape[0]
std_ = math.sqrt(1. / in_size)
nn.init.normal_(self.bases_mask, std=std_)
else: # GCN and ChebNet have no trainable bases, thus no bases_mask
self.bases_mask = torch.tensor(1.0)
## define coeff operation,
## for three types of GCN, this is the same
self.coeff_conv = nn.Conv1d(
in_channels=self.num_bases*in_channels,
out_channels=out_channels,
kernel_size=1,
bias=False,
)
## bias
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
n = in_channels * self.num_bases
stdv = 1. / math.sqrt(n)
self.bias.data.uniform_(-stdv, stdv)
else:
self.register_parameter('bias', None)
def get_bases_template(self, A_):
"""
Get bases_template from adjusted A' = A + I
Args:
A_: A + I
"""
bases_template = []
for order in self.order_list:
if self.gcn_type == 'GCN':
assert (len(self.order_list) == 1) and (self.order_list[0]==1)
assert self.num_bases == 1
bases_template += [normalize_undigraph(A_)]
elif self.gcn_type == 'ChebNet':
assert self.order_list == list(np.arange(self.num_bases))
# build identity martix
I = torch.eye(A_.shape[0])
# get original A: A'-I
A = A_ - I
# get normalized_rescaled_laplacian L_
L_ = A2normed_scaled_L(A)
# get L0, L1, ..., Lk
if order == 0:
L0 = I
bases_template += [L0]
elif order == 1:
L1 = L_
bases_template += [L1]
else: # order >= 2
# L2 = 2L*L1 - L0
L2 = 2 * torch.matmul(L_, L1) - L0
bases_template += [L2]
# update L1, L0 and compute L2 recursively
L1, L0 = L2, L1
else: # 'GCN_Bases'
# assert not (0 in self.order_list)
bases_template += [k_th_order_A(order, A_)]
bases_template = torch.stack(bases_template, dim=0)
bases_template.requires_grad = False
return bases_template
def forward(self, input):
N, in_channels, num_nodes = input.shape
## first step in dcf
features_bases = []
rec_kernel = self.bases_template * self.bases_mask
for kernel in rec_kernel:
# each with shape [N, in_channels, num_nodes]
features_bases += [torch.matmul(input, kernel)]
# with shape [N, in_channels*num_bases, num_nodes]
features_bases = torch.cat(features_bases, dim=1)
## second step, with shape [N, out_channels, num_nodes]
features_bases = self.coeff_conv(features_bases)
## add bias
features_bases += self.bias.unsqueeze(-1)
return features_bases
class Model(nn.Module):
def __init__(self, gcn_type, num_bases, order_list, graph_type='ring',
use_shared_bases=False):
super(Model, self).__init__()
if use_shared_bases:
assert gcn_type == 'GCN_Bases'
self.gcn_type = gcn_type
self.num_bases = num_bases
self.order_list = order_list
self.graph_type = graph_type
self.use_shared_bases = use_shared_bases
## 2 gc layers
if self.use_shared_bases:
self.gconv1 = GraphConv_Bases_Shared(1, 32, level=1)
self.gconv2 = GraphConv_Bases_Shared(32, 64, level=2)
else:
self.gconv1 = GraphConv_Bases(1, 32, level=1, bias=True, gcn_type=gcn_type,
num_bases=num_bases, order_list=order_list,
graph_type=self.graph_type)
self.gconv2 = GraphConv_Bases(32, 64, level=2, bias=True, gcn_type=gcn_type,
num_bases=num_bases, order_list=order_list,
graph_type=self.graph_type)
## bn layers
self.bn1 = nn.BatchNorm1d(32)
self.bn2 = nn.BatchNorm1d(64)
# calculate params for GCN layers
self.total_params = np.sum([param.numel() for param in self.parameters()])
if self.gcn_type == 'GCN_Bases' and not self.use_shared_bases:
# import pdb; pdb.set_trace()
self.total_params -= np.sum([conv.bases_template.numel() -
torch.sum(conv.bases_template) for conv in [self.gconv1, self.gconv2]])
## relu
self.relu = nn.ReLU(inplace=True)
## pooling layers
self.max_pool1 = nn.MaxPool1d(kernel_size=2)
# pool to 1 node finally
self.global_avg_pool = nn.AdaptiveAvgPool1d(output_size=1)
self.fc = nn.Linear(64, 2)
def forward(self, x):
x = self.gconv1(x)
x = self.relu(x)
x = self.max_pool1(x)
x = self.bn1(x)
# print(x.shape)
x = self.gconv2(x)
x = self.relu(x)
# print(x.shape)
x = self.global_avg_pool(x)
# x = self.max_pool2(x)
# print(x.shape)
x = self.bn2(x)
# print(x.shape)
x = x.view(x.shape[0], -1)
x = self.fc(x)
return F.log_softmax(x, dim=1)
class Model_1layer(nn.Module):
def __init__(self, gcn_type, num_bases, order_list, graph_type='ring',
use_shared_bases=False):
super(Model_1layer, self).__init__()
if use_shared_bases:
assert gcn_type == 'GCN_Bases'
self.gcn_type = gcn_type
self.num_bases = num_bases
self.order_list = order_list
self.graph_type = graph_type
self.use_shared_bases = use_shared_bases
## gc layer1, bn1
if self.use_shared_bases:
self.gconv1 = GraphConv_Bases_Shared(1, 32, level=1)
else:
self.gconv1 = GraphConv_Bases(1, 32, level=1, bias=True, gcn_type=gcn_type,
num_bases=num_bases, order_list=order_list,
graph_type=self.graph_type)
self.bn1 = nn.BatchNorm1d(32)
# calculate params for GCN layers
self.total_params = np.sum([param.numel() for param in self.parameters()])
if self.gcn_type == 'GCN_Bases' and not self.use_shared_bases:
# import pdb; pdb.set_trace()
self.total_params -= self.gconv1.bases_template.numel() - \
torch.sum(self.gconv1.bases_template)
## relu
self.relu = nn.ReLU(inplace=True)
## pooling layers
# pool to 1 node finally
self.global_avg_pool = nn.AdaptiveAvgPool1d(output_size=1)
## one fc layers
self.fc = nn.Linear(32, 2)
def forward(self, x):
x = self.gconv1(x)
x = self.relu(x)
x = self.global_avg_pool(x)
x = self.bn1(x)
x = x.view(x.shape[0], -1)
x = self.fc(x)
return F.log_softmax(x, dim=1)