-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_dcfens_imgnet100_CI.py
469 lines (378 loc) · 16.6 KB
/
train_dcfens_imgnet100_CI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import os
import sys
import torch
import torch.nn as nn
import numpy as np
import argparse
import copy
import pdb
import torch.nn.functional as F
import re, random, collections
import pickle
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
import argparse
from torch.optim.lr_scheduler import MultiStepLR
torch.set_printoptions(precision=5,sci_mode=False)
from models.resnet18_dcf_bsensemble_imgnet import Net
import incremental_dataloader as data
from utils import *
from models.Conv_DCFE import *
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default="./Datasets/ImageNet/")
parser.add_argument('--num_class', default=100, type=int)
parser.add_argument('--num_task', default=6, type=int, choices=[6, 11])
parser.add_argument('--first_task_cls', default=10, type=int)
parser.add_argument('--dataset', default='imagenet100')
parser.add_argument('--list_used', default='f100')
parser.add_argument('--train_batch', default=128, type=int)
parser.add_argument('--test_batch', default=500, type=int)
parser.add_argument('--workers', default=8, type=int)
parser.add_argument('--random_classes', action='store_true')
parser.add_argument('--validation', type=float, default=0.0)
parser.add_argument('--overflow', action='store_true')
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--lr_sub', type=float, default=0.01, help='used after the 1st task')
parser.add_argument('--lr_schedule', default='80-120', help='learning rate drop schedule')
parser.add_argument('--lr_schedule_sub', default='80-120', help='learning rate drop schedule, used after the 1st task')
parser.add_argument('--total_epoch', default=160, type=int)
parser.add_argument('--total_epoch_sub', default=160, type=int, help='used after the 1st task')
parser.add_argument('--wd', default=5e-3, help='weight decay', type=float)
parser.add_argument('--wd_sub', default=5e-3, help='weight decay, used after the 1st task', type=float)
parser.add_argument('--optim', default='sgd', choices=['sgd', 'adam', 'nestrov'], help='Optimizer')
parser.add_argument('--gpu', default='0')
parser.add_argument('--init_with_pre', action='store_true',
help='initialize the current task model parameters with the previous one')
parser.add_argument('--start_from', default=0, type=int, help='start CL from which task')
parser.add_argument('--num_bases', default=12, type=int)
parser.add_argument('--num_member', default=1, type=int)
parser.add_argument('--add_description', default='')
args = parser.parse_args()
## task per class
args.class_per_task = int(args.num_class // args.num_task)
args.model = 'resnet18'
log_path = 'checkpoints'
exp_name = f'imagenet100_{args.num_task}tasks_firstcls{args.first_task_cls}_member{args.num_member}_{args.model}_bases{args.num_bases}_wd{args.wd}_{args.optim}'
exp_name += f'_{args.add_description}' if args.add_description else ''
args.model_path = os.path.join(log_path, exp_name)
os.makedirs(args.model_path, exist_ok=True)
## create checkpoint dir and copy files
file_dir = os.path.join(args.model_path, 'files')
os.makedirs(args.model_path, exist_ok=True)
os.makedirs(file_dir, exist_ok=True)
os.system(f'cp -r models/ idatasets/ *.py *.sh {file_dir}')
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu
set_seed(3473)
## logger, copy stdout to a file
from logger import FileOutputDuplicator
sys.stdout = FileOutputDuplicator(sys.stdout, os.path.join(args.model_path, 'log.txt'), 'w')
print('Args:')
print(args)
print()
def train(train_loader, epoch, task, model, total_epoch):
## model: currently trained model, task_model: past models
print('\nTask: %d, Epoch: %d' % (task, epoch))
model.branch_list[task].train()
model.heads[task].train()
global best_acc
metric_loss = 0
min_entro_losses = 0
train_loss = 0
correct = 0
total = 0
previous_cls = sum(class_increments[:task])
for batch_idx, (inputs, targets) in enumerate(train_loader):
# pdb.set_trace()
inputs, targets = inputs.cuda(), targets.cuda()
targets=targets-previous_cls # assume sequential split for random split mapping should me changed
optimizer.zero_grad()
outputs,feat_current = model(inputs, task_id=task)
loss = criterion(outputs, targets)
loss.backward()
## clip gradient norm
torch.nn.utils.clip_grad.clip_grad_norm_(model.parameters(), 5.0)
optimizer.step()
train_loss += loss.item()
# _, predicted = outputs[0].max(1)
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100.*correct/total
print("[Train: ], [%d/%d: ], [Accuracy: %.2f], [Loss: %f], [Lr: %f]"
%(epoch, total_epoch, acc, train_loss/batch_idx, optimizer.param_groups[0]['lr']))
def ensemble_outputs(pre_outputs, bs):
"""
pre_outputs: with batch_size repeated to batch_size * ensemble_numbers
bs: real batch_size
"""
## a list of outputs with length [num_member], each with shape [bs, num_cls]
outputs = pre_outputs.split(bs)
## with shape [bs, num_cls, num_member]
outputs = torch.stack(outputs, dim=-1)
outputs = F.log_softmax(outputs, dim=-2)
## with shape [bs, num_cls]
log_outputs = logmeanexp(outputs, dim=-1)
return log_outputs
def get_optimizer(model, task_id):
"""
train all parameters, or train atoms+heads only
"""
# pdb.set_trace()
parameters_branch = dict((model.branch_list[task_id]).named_parameters())
parameters_branch_head = dict((model.heads[task_id]).named_parameters())
## feat params
parameters = [v for k, v in parameters_branch.items() if not ('coef' in k)]
train_keys = [k for k, v in parameters_branch.items() if not ('coef' in k)]
## head parameters
parameters += [v for k, v in parameters_branch_head.items()]
train_keys += [k for k, v in parameters_branch_head.items()]
if task_id == 0:
## learn coefficient
parameters = parameters + list(model.coeff_list)
train_keys = train_keys + [f'coeff_list.{i}' for i in range(len(model.coeff_list))]
print('***Optimized Parameters:')
# pdb.set_trace()
print(', '.join(train_keys))
if task_id > 0:
branch_param_count = np.sum([param.numel() for param in parameters]) / 1e6
print('\nNumber of Params in a New Branch: {:.2f}M'.format(branch_param_count))
print('Added Memory per task: {:.2f}MB\n'.format(branch_param_count*4))
if args.optim == 'sgd':
if task_id == 0:
optimizer = optim.SGD(parameters, lr=args.lr, momentum=0.9, weight_decay=args.wd)
else:
optimizer = optim.SGD(parameters, lr=args.lr_sub, momentum=0.9, weight_decay=args.wd_sub)
elif args.optim == 'adam':
optimizer = torch.optim.Adam(parameters, weight_decay=args.wd, lr=args.lr)
elif args.optim == 'nestrov':
optimizer = torch.optim.SGD(parameters, lr=args.lr, momentum=0.9, nesterov=True)
else:
raise NotImplementedError('...')
return optimizer
def check_task(task, inputs, model, total_task='all'):
"""
Task id classification
"""
joint_entropy_tasks=[]
model.eval()
bs = inputs.shape[0]
with torch.no_grad():
## list of tensors, each with shape [bs*num_member, num_cls_taski]
preoutputs, _ = model(torch.cat([inputs]*args.num_member, 0), task_id=None)
## calculate entropy of every branch(task)
for i, preout_ in enumerate(preoutputs):
## with shape [bs, num_cls_taski]
outputs = ensemble_outputs(preout_, bs)
outputs = torch.exp(outputs)
## get entropy -\sum_y y * log(y), with shape [bs]
joint_entropy = -torch.sum(outputs * torch.log(outputs+0.0001), dim=1)
"""
normailzing term for entropy given number of classes
"""
p = class_increments[i] // min(class_increments)
if args.num_task == 11 and i == 0:
p *= 4
joint_entropy /= p
joint_entropy_tasks.append(joint_entropy)
## with shape [bs, num_current_task]
joint_entropy_tasks = torch.stack(joint_entropy_tasks)
joint_entropy_tasks = joint_entropy_tasks.transpose(0, 1)
"""
constrain to previous seen tasks
"""
if not total_task == 'all':
joint_entropy_tasks = joint_entropy_tasks[:, :total_task]
## mask to indicate the correct task prediction
ctask = torch.argmin(joint_entropy_tasks, axis=1)==task
correct = sum(ctask)
return ctask, correct, joint_entropy
def test(test_loader, task, model):
global best_acc
model.eval()
test_loss = 0
correct_ti = 0
correct_ci = 0
total = 0
cl_loss=0
tcorrect=0
previous_cls = sum(class_increments[:task])
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets1 = inputs.cuda(), targets.cuda()
targets=targets1-previous_cls
bs = inputs.shape[0]
if task>0:
## for task_id > 0, get
correct_sample, Ncorrect, _ = check_task(task, inputs, model)
tcorrect += Ncorrect
## inference forward
if inputs.shape[0]!=0:
## with shape [bs*num_member, num_cls]
outputs, _ = model(torch.cat([inputs]*args.num_member, dim=0), task_id=task)
## ensemble results, with shape [bs, cls_per_task]
outputs = ensemble_outputs(outputs, bs)
loss = F.nll_loss(outputs, targets)
test_loss += loss.item()
## ti
_, predicted = outputs.max(1)
correct_ti += predicted.eq(targets).sum().item()
## ci
if task > 0:
predicted = predicted[correct_sample]
targets = targets[correct_sample]
correct_ci += predicted.eq(targets).sum().item()
## true batch size
total += targets1.size(0)
acc_ti = 100. * correct_ti / total
if task > 0:
taskC = tcorrect.item()/total
acc_ci = 100. * correct_ci / total
print("[Test CI Acc.: %.2f], [TI Acc.: %.2f] [Loss: %f] [Correct: %f]" %(acc_ci, acc_ti,
test_loss/batch_idx, taskC))
else:
taskC = 1.0
acc_ci = acc_ti
print("[Test TI Acc.: %.2f] [Loss: %f] [Correct: %f]" %(acc_ti, test_loss/batch_idx, taskC))
## model saving
if acc_ci >= best_acc:
save_model(args, task, acc_ci, model)
best_acc = acc_ci
return acc_ci
def inferecne(test_loader, task, total_task, model):
global best_acc
model.eval()
test_loss = 0
correct_ti = 0 ## task class cls. correct
correct_ci = 0
total = 0
cl_loss=0
tcorrect=0 ## task id classification correct
accuracy=[]
previous_cls = sum(class_increments[:task])
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets1 = inputs.cuda(), targets.cuda()
bs = inputs.shape[0]
# pdb.set_trace()
targets = targets1 - previous_cls
### task id cls.
correct_sample, Ncorrect, _ = check_task(task, inputs, model, total_task)
tcorrect += Ncorrect
if inputs.shape[0]!=0:
## single branch forward, with shape [bs*num_member, cls_per_task]
outputs, _ = model(torch.cat([inputs] * args.num_member, dim=0), task_id=task)
## ensemble results, log of softmax scores, with shape [bs, cls_per_task]
outputs = ensemble_outputs(outputs, bs)
loss = F.nll_loss(outputs, targets)
test_loss += loss.item()
## ti
_, predicted = outputs.max(1)
correct_ti += predicted.eq(targets).sum().item()
"""
select the samples with correct task id prediction
"""
predicted = predicted[correct_sample]
targets = targets[correct_sample]
correct_ci += predicted.eq(targets).sum().item()
## true batch size
total += targets1.size(0)
taskC = tcorrect.item()/total
acc_ti = 100.*correct_ti/total
acc_ci = 100.*correct_ci/total
# print("[Test CI Acc.: %.2f], [TI Acc.: %.2f] [Loss: %f] [Correct: %f]" %(acc_ci, acc_ti,
# test_loss/batch_idx, taskC))
return correct_ci, total, tcorrect, acc_ti
## Dataloaders
inc_dataset = data.IncrementalDataset(
dataset_name=args.dataset,
args = args,
random_order=args.random_classes,
shuffle=True,
seed=1,
batch_size=args.train_batch,
workers=args.workers,
validation_split=args.validation,
increment=args.class_per_task,
first_task_cls=args.first_task_cls,
num_tasks=args.num_task
)
task_data=[]
for i in range(args.num_task):
task_info, train_loader, val_loader, test_loader = inc_dataset.new_task()
task_data.append([train_loader, test_loader])
class_increments = inc_dataset.increments
## initialize network
net = Net(num_classes=args.class_per_task, num_bases=args.num_bases, num_member=args.num_member)
if args.start_from > 0:
for pre_t in range(args.start_from):
task_cls_ = class_increments[pre_t]
net.add_branch(task_cls_)
net.cuda()
## load previous model (mainly load the coefficient)
load_model_resume(args, pre_t, net)
## Training
###############################################
ci_acc_list=[]
criterion = nn.CrossEntropyLoss()
for task in range(args.start_from, args.num_task):
### My version of training/ testing a task
best_acc = 0
print('Training Task :---'+str(task))
## dataloaders
train_loader, test_loader = task_data[task][0],task_data[task][1]
## add a new network branch
net.add_branch(class_increments[task], task)
net.cuda()
# init model with previous task's params
if task > 0 and args.init_with_pre:
copy_head = class_increments[task] == class_increments[task-1]
load_past(args, task, net, copy_first=False, copy_head=copy_head)
## get optimizer
optimizer = get_optimizer(net, task)
if task == 0:
schedule = args.lr_schedule
schedule = [int(s) for s in schedule.split('-')]
print('LR Drop Schedule: ', schedule)
schedulerG = MultiStepLR(optimizer, milestones=schedule,gamma=0.1)
else:
schedule = args.lr_schedule_sub
schedule = [int(s) for s in schedule.split('-')]
print('LR Drop Schedule: ', schedule)
schedulerG = MultiStepLR(optimizer, milestones=schedule,gamma=0.1)
## train-test
total_epoch = args.total_epoch if task == 0 else args.total_epoch_sub
for epoch in range(total_epoch):
train(train_loader, epoch, task, net, total_epoch)
test(test_loader, task, net)
schedulerG.step()
## restore the best model
acc1 = load_model(args, task, net)
# task_acc.append(acc1)
# print('Task: '+str(task)+' Test_accuracy: '+ str(acc1))
## CI test for the current phase
correct_cis = 0
totals = 0
task_pred_cors = 0
acc_ti_list = []
num_task_ = task + 1
for task in range(num_task_):
# print('Testing Task :---'+str(task))
test_loader = task_data[task][1]
correct_ci, total, task_pred_cor, acc_ti = inferecne(test_loader, task, num_task_, net)
correct_cis += correct_ci
totals += total
task_pred_cors += task_pred_cor.item()
acc_ti_list.append(acc_ti)
# pdb.set_trace()
task_acc_ = correct_cis / totals * 100.
task_pred_acc_ = task_pred_cors / totals * 100.
task_acc_ti = np.mean(acc_ti_list)
## report CI acc. and task-id acc.
ci_acc_list.append(task_acc_)
print('Total tasks: {}, CIL Acc: {:.2f}, Task-id Cls. Acc.: {:.2f}'.format(num_task_, task_acc_, task_pred_acc_))
print()
print(ci_acc_list)
print('\n For Class-Incremental Learning, Average Incremental Accuracy: {:.2f}'.format(np.mean(ci_acc_list)))