-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRuntimeStats.py
95 lines (78 loc) · 3.75 KB
/
RuntimeStats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import pandas as pd
import os
from os import path
import csv
import time
from .Logging import logger
from .IIDs import IIDs
from .Hyperparams import Hyperparams as param
write_event_trace = True
write_metrics = True
class RuntimeStats:
def __init__(self):
self.total_uses = 0
self.guided_uses = 0
self.covered_iids = set()
self.executed_lines = []
if write_event_trace:
self.event_trace = []
self.iids = IIDs(param.iids_file)
def cover_iid(self, iid):
self.covered_iids.add(iid)
if write_event_trace:
self.event_trace.append(f"Line {self.iids.line(iid)}: Executed")
def cover_line(self, iid):
self.executed_lines.append(iid)
logger.info(f"Line {self.iids.line(iid)}: Executed")
def inject_value(self, iid, msg):
if write_event_trace:
self.event_trace.append(
f"Line {self.iids.line(iid)}: {msg}")
def uncaught_exception(self, iid, e):
if write_event_trace:
self.event_trace.append(
f"Line {self.iids.line(iid)}: Uncaught exception {type(e)}\n{e}")
def print(self):
logger.info(f"Covered iids: {len(self.covered_iids)}")
logger.info(f"Total uses: {self.total_uses}")
logger.info(f"Guided uses : {self.guided_uses}/{self.total_uses}")
def _save_summary_metrics(self, file, predictor_name, execution_time):
if write_metrics:
# Create destination dir if it doesn't exist
if not os.path.exists(f'{param.metrics_path}'):
os.makedirs(f'{param.metrics_path}')
if not os.path.exists(f'{param.metrics_path}/{param.dataset}'):
os.makedirs(f'{param.metrics_path}/{param.dataset}')
if not os.path.exists(f'{param.metrics_path}/{param.dataset}/{predictor_name}'):
os.makedirs(f'{param.metrics_path}/{param.dataset}/{predictor_name}')
if not os.path.exists(f'{param.metrics_path}/{param.dataset}/{predictor_name}/raw'):
os.makedirs(f'{param.metrics_path}/{param.dataset}/{predictor_name}/raw')
# Create CSV file and add header if it doesn't exist
if not os.path.isfile(f'{param.metrics_path}/{param.dataset}/{predictor_name}/raw/metrics.csv'):
columns = ['file', 'predictor', 'covered_iids',
'total_uses', 'guided_uses', 'executed_lines',
'covered_lines', 'execution_time'
]
with open(f'{param.metrics_path}/{param.dataset}/{predictor_name}/raw/metrics.csv', 'a') as csvFile:
writer = csv.writer(csvFile)
writer.writerow(columns)
df = pd.read_csv(f'{param.metrics_path}/{param.dataset}/{predictor_name}/raw/metrics.csv')
df_new_data = pd.DataFrame({
'file': [file],
'predictor': [predictor_name],
'covered_iids': [len(self.covered_iids)],
'total_uses': [self.total_uses],
'guided_uses': [self.guided_uses],
'executed_lines': [len(self.executed_lines)],
'covered_lines': [len(set(self.executed_lines))],
'execution_time': [execution_time]
})
df = pd.concat([df, df_new_data])
df.to_csv(f'{param.metrics_path}/{param.dataset}/{predictor_name}/raw/metrics.csv', index=False)
def _save_event_trace(self):
with open("trace.txt", "w") as fp:
fp.write("\n".join(self.event_trace))
def save(self, file, predictor_name, start_time):
self._save_summary_metrics(file, predictor_name, time.time() - start_time)
if write_event_trace:
self._save_event_trace()