-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_mujoco.py
126 lines (99 loc) · 4.49 KB
/
run_mujoco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import torch
import numpy as np
from envs.ma_mujoco.multiagent_mujoco.mujoco_multi import MujocoMulti
from envs.env_wrappers import ShareDummyVecEnv
from utils.logger import setup_logger_kwargs, Logger
from utils.util import evaluate
from datasets.offline_dataset import ReplayBuffer
from algos.OMIGA import OMIGA
import wandb
from tqdm import tqdm
def make_train_env(config):
def get_env_fn(rank):
def init_env():
if config['env_name'] == "mujoco":
env_args = {"scenario": config['scenario'],
"agent_conf": config['agent_conf'],
"agent_obsk": config['agent_obsk'],
"episode_limit": 1000}
env = MujocoMulti(env_args=env_args)
else:
print("Can not support the " + config['env_name'] + "environment.")
raise NotImplementedError
env.seed(config['seed'])
return env
return init_env
return ShareDummyVecEnv([get_env_fn(0)])
def make_eval_env(config):
def get_env_fn(rank):
def init_env():
if config['env_name'] == "mujoco":
env_args = {"scenario": config['scenario'],
"agent_conf": config['agent_conf'],
"agent_obsk": config['agent_obsk'],
"episode_limit": 1000}
env = MujocoMulti(env_args=env_args)
else:
print("Can not support the " + config['env_name'] + "environment.")
raise NotImplementedError
env.seed(config['seed'])
return env
return init_env
return ShareDummyVecEnv([get_env_fn(0)])
def run(config):
assert config['algo']=='OMIGA', "Invalid algorithm"
assert config['env_name'] == 'mujoco', "Invalid environment"
env_name = config['scenario'] + '-' + config['agent_conf'] + '-' + config['data_type']
exp_name = config['algo']
name = config['algo'] + '-' + config['scenario'] + '-' + config['agent_conf'] + '-' + config['data_type'] + '-' + 'test_s' + str(config['seed'])
if config['wandb'] == True:
wandb.init(project=exp_name, name=name, group=env_name)
# Seeding
np.random.seed(config['seed'])
torch.manual_seed(config['seed'])
env = make_train_env(config)
eval_env = make_eval_env(config)
state_dim = env.observation_space[0].shape[0]
action_dim = env.action_space[0].shape[0]
n_agents = len(env.observation_space)
print('state_dim:', state_dim, 'action_dim:', action_dim, 'num_agents:', n_agents)
logger_kwargs = setup_logger_kwargs(env_name, config['seed'])
logger = Logger(**logger_kwargs)
logger.save_config(config)
# Datasets
offline_dataset = ReplayBuffer(state_dim, action_dim, n_agents, env_name, config['data_dir'], device=config['device'])
offline_dataset.load()
result_logs = {}
def _eval_and_log(train_result, config):
train_result = {k: v.detach().cpu().numpy() for k, v in train_result.items()}
print('\n==========Policy testing==========')
# evaluation via real-env rollout
ep_r = evaluate(agent, eval_env, config['env_name'])
train_result.update({'ep_r': ep_r})
result_log = {'log': train_result, 'step': iteration}
result_logs[str(iteration)] = result_log
for k, v in sorted(train_result.items()):
print(f'- {k:23s}:{v:15.10f}')
print(f'iteration={iteration}')
print('\n==========Policy training==========', flush=True)
return train_result
# Agent
agent = OMIGA(state_dim, action_dim, n_agents, eval_env, config)
# Train
print('\n==========Start training==========')
for iteration in tqdm(range(0, config['total_iterations']), ncols=70, desc=config['algo'], initial=1, total=config['total_iterations'], ascii=True, disable=os.environ.get("DISABLE_TQDM", False)):
o, s, a, r, mask, s_next, o_next, a_next = offline_dataset.sample(config['batch_size'])
train_result = agent.train_step(o, s, a, r, mask, s_next, o_next, a_next)
if iteration % config['log_iterations'] == 0:
train_result = _eval_and_log(train_result, config)
if config['wandb'] == True:
wandb.log(train_result)
# Save results
logger.save_result_logs(result_logs)
env.close()
eval_env.close()
if __name__ == "__main__":
from configs.config import get_parser
args = get_parser().parse_args()
run(vars(args))