-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathloss.py
309 lines (248 loc) · 13.2 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
from config import Config
def pairwise_distance_torch(embeddings, device=torch.device("cuda")):
"""Computes the pairwise distance matrix with numerical stability.
output[i, j] = || feature[i, :] - feature[j, :] ||_2
Args:
embeddings: 2-D Tensor of size [number of data, feature dimension].
Returns:
pairwise_distances: 2-D Tensor of size [number of data, number of data].
"""
# pairwise distance matrix with precise embeddings
precise_embeddings = embeddings.to(dtype=torch.float32)
c1 = torch.pow(precise_embeddings, 2).sum(axis=-1)
c2 = torch.pow(precise_embeddings.transpose(0, 1), 2).sum(axis=0)
c3 = precise_embeddings @ precise_embeddings.transpose(0, 1)
c1 = c1.reshape((c1.shape[0], 1))
c2 = c2.reshape((1, c2.shape[0]))
c12 = c1 + c2
pairwise_distances_squared = c12 - 2.0 * c3
# Deal with numerical inaccuracies. Set small negatives to zero.
pairwise_distances_squared = torch.max(pairwise_distances_squared, torch.tensor([0.]).to(device))
# Get the mask where the zero distances are at.
error_mask = pairwise_distances_squared.clone()
error_mask[error_mask > 0.0] = 1.
error_mask[error_mask <= 0.0] = 0.
pairwise_distances = torch.mul(pairwise_distances_squared, error_mask)
# Explicitly set diagonals to zero.
mask_offdiagonals = torch.ones((pairwise_distances.shape[0], pairwise_distances.shape[1])) - torch.diag(torch.ones(pairwise_distances.shape[0]))
pairwise_distances = torch.mul(pairwise_distances.to(device), mask_offdiagonals.to(device))
return pairwise_distances
def TripletSemiHardLoss(y_pred, y_true, device=torch.device("cuda"), margin=1.0):
"""Computes the triplet loss_functions with semi-hard negative mining.
The loss_functions encourages the positive distances (between a pair of embeddings
with the same labels) to be smaller than the minimum negative distance
among which are at least greater than the positive distance plus the
margin constant (called semi-hard negative) in the mini-batch.
If no such negative exists, uses the largest negative distance instead.
See: https://arxiv.org/abs/1503.03832.
We expect labels `y_true` to be provided as 1-D integer `Tensor` with shape
[batch_size] of multi-class integer labels. And embeddings `y_pred` must be
2-D float `Tensor` of l2 normalized embedding vectors.
Args:
margin: Float, margin term in the loss_functions definition. Default value is 1.0.
name: Optional name for the op.
"""
labels, embeddings = y_true, y_pred
# Reshape label tensor to [batch_size, 1].
labels = torch.reshape(labels, [labels.shape[0], 1])
pdist_matrix = pairwise_distance_torch(embeddings, device)
# Build pairwise binary adjacency matrix.
adjacency = torch.eq(labels, labels.transpose(0, 1))
# Invert so we can select negatives only.
adjacency_not = adjacency.logical_not()
batch_size = labels.shape[0]
# Compute the mask.
pdist_matrix_tile = pdist_matrix.repeat(batch_size, 1)
adjacency_not_tile = adjacency_not.repeat(batch_size, 1)
transpose_reshape = pdist_matrix.transpose(0, 1).reshape(-1, 1)
greater = pdist_matrix_tile > transpose_reshape
mask = adjacency_not_tile & greater
# final mask
mask_step = mask.to(dtype=torch.float32)
mask_step = mask_step.sum(axis=1)
mask_step = mask_step > 0.0
mask_final = mask_step.reshape(batch_size, batch_size)
mask_final = mask_final.transpose(0, 1)
adjacency_not = adjacency_not.to(dtype=torch.float32)
mask = mask.to(dtype=torch.float32)
# negatives_outside: smallest D_an where D_an > D_ap.
axis_maximums = torch.max(pdist_matrix_tile, dim=1, keepdim=True)
masked_minimums = torch.min(torch.mul(pdist_matrix_tile - axis_maximums[0], mask), dim=1, keepdim=True)[0] + axis_maximums[0]
negatives_outside = masked_minimums.reshape([batch_size, batch_size])
negatives_outside = negatives_outside.transpose(0, 1)
# negatives_inside: largest D_an.
axis_minimums = torch.min(pdist_matrix, dim=1, keepdim=True)
masked_maximums = torch.max(torch.mul(pdist_matrix - axis_minimums[0], adjacency_not), dim=1, keepdim=True)[0] + axis_minimums[0]
negatives_inside = masked_maximums.repeat(1, batch_size)
semi_hard_negatives = torch.where(mask_final, negatives_outside, negatives_inside)
loss_mat = margin + pdist_matrix - semi_hard_negatives
mask_positives = adjacency.to(dtype=torch.float32) - torch.diag(torch.ones(batch_size)).to(device)
num_positives = mask_positives.sum()
triplet_loss = (torch.max(torch.mul(loss_mat, mask_positives), torch.tensor([0.]).to(device))).sum() / num_positives
triplet_loss = triplet_loss.to(dtype=embeddings.dtype)
return triplet_loss
class TripletLoss(nn.Module):
def __init__(self, margin=1.0):
super().__init__()
self.margin = margin
def forward(self, ipt, target, **kwargs):
return TripletSemiHardLoss(ipt, target, margin=self.margin)
class IoU_loss(torch.nn.Module):
def __init__(self):
super(IoU_loss, self).__init__()
def forward(self, pred, target):
b = pred.shape[0]
IoU = 0.0
for i in range(0, b):
# compute the IoU of the foreground
Iand1 = torch.sum(target[i, :, :, :] * pred[i, :, :, :])
Ior1 = torch.sum(target[i, :, :, :]) + torch.sum(pred[i, :, :, :]) - Iand1
IoU1 = Iand1 / Ior1
# IoU loss is (1-IoU1)
IoU = IoU + (1-IoU1)
# return IoU/b
return IoU
class ThrReg_loss(torch.nn.Module):
def __init__(self):
super(ThrReg_loss, self).__init__()
def forward(self, pred, gt=None):
return torch.mean(1 - ((pred - 0) ** 2 + (pred - 1) ** 2))
class DSLoss(nn.Module):
"""
IoU loss for outputs in [1:] scales.
"""
def __init__(self):
super(DSLoss, self).__init__()
self.config = Config()
self.lambdas_sal_last = self.config.lambdas_sal_last
self.lambdas_sal_others = self.config.lambdas_sal_others
self.triplet_loss = ['vanilla', 'semi_hard'][0]
self.criterions_last = {}
if 'bce' in self.lambdas_sal_last and self.lambdas_sal_last['bce']:
self.criterions_last['bce'] = nn.BCELoss()
if 'iou' in self.lambdas_sal_last and self.lambdas_sal_last['iou']:
self.criterions_last['iou'] = IoU_loss()
if 'ssim' in self.lambdas_sal_last and self.lambdas_sal_last['ssim']:
self.criterions_last['ssim'] = SSIMLoss()
if 'mse' in self.lambdas_sal_last and self.lambdas_sal_last['mse']:
self.criterions_last['mse'] = nn.MSELoss()
if 'reg' in self.lambdas_sal_last and self.lambdas_sal_last['reg']:
self.criterions_last['reg'] = ThrReg_loss()
if 'triplet' in self.lambdas_sal_last and self.lambdas_sal_last['triplet']:
margin = self.config.triplet_loss_margin
if self.triplet_loss == 'vanilla':
self.criterion_triplet = nn.TripletMarginLoss(margin=margin)
elif self.criterion_triplet == 'semi_hard':
self.criterion_triplet = TripletLoss(margin=margin)
self.criterions_others = {}
if 'bce' in self.lambdas_sal_others and self.lambdas_sal_others['bce']:
self.criterions_others['bce'] = nn.BCELoss()
if 'iou' in self.lambdas_sal_others and self.lambdas_sal_others['iou']:
self.criterions_others['iou'] = IoU_loss()
if 'ssim' in self.lambdas_sal_others and self.lambdas_sal_others['ssim']:
self.criterions_others['ssim'] = SSIMLoss()
if 'mse' in self.lambdas_sal_others and self.lambdas_sal_others['mse']:
self.criterions_others['mse'] = nn.MSELoss()
def forward(self, scaled_preds, gt, norm_features=None, labels=None):
loss = 0
for idx_output, pred_lvl in enumerate(scaled_preds):
if pred_lvl.shape != gt.shape:
pred_lvl = nn.functional.interpolate(pred_lvl, size=gt.shape[2:], mode='bilinear', align_corners=True)
if idx_output == len(scaled_preds) - 1:
if not(self.config.db_output_refiner or (not self.config.refine and self.config.db_output_decoder)):
pred_lvl = pred_lvl.sigmoid()
for criterion_name, criterion in self.criterions_last.items():
loss += criterion(pred_lvl, gt) * self.lambdas_sal_last[criterion_name]
# loss_outside = self.criterions_last['iou'](pred_lvl * (1 - gt), gt * (1 - gt)) * self.lambdas_sal_last['iou'] * 2
# loss_inside = self.criterions_last['bce'](pred_lvl * gt, gt) * self.lambdas_sal_last['bce'] * 2
# loss_inside += self.criterions_last['mse'](pred_lvl * gt, gt) * self.lambdas_sal_last['mse'] * 2
# loss += (loss_outside + loss_inside)
else:
if not (self.config.refine and self.config.db_output_decoder and idx_output == len(scaled_preds) - 2):
pred_lvl = pred_lvl.sigmoid()
for criterion_name, criterion in self.criterions_others.items():
loss += criterion(pred_lvl, gt) * self.lambdas_sal_others[criterion_name]
if self.lambdas_sal_last['triplet'] and norm_features is not None:
triplet_loss = 0
for norm_feature in norm_features:
# vanilla triplet loss in PyTorch
if self.triplet_loss == 'vanilla':
num_feature_per_group = norm_feature.shape[0] // 2
feat_A = norm_feature[:num_feature_per_group]
feat_B = norm_feature[num_feature_per_group:]
# A/2 - A/2 - B/2
loss_triplet_ancA = self.criterion_triplet(feat_A[:num_feature_per_group//2], feat_A[-(num_feature_per_group//2):], feat_B[:num_feature_per_group//2])
loss_triplet_ancB = self.criterion_triplet(feat_B[:num_feature_per_group//2], feat_B[-(num_feature_per_group//2):], feat_A[:num_feature_per_group//2])
triplet_loss += (loss_triplet_ancA + loss_triplet_ancB)
elif self.triplet_loss == 'semi_hard':
triplet_loss += self.criterion_triplet(norm_feature, labels)
triplet_loss = triplet_loss * self.config.lambdas_sal_last['triplet'] / len(norm_features)
loss += triplet_loss
return loss, triplet_loss
return loss
class SSIMLoss(torch.nn.Module):
def __init__(self, window_size=11, size_average=True):
super(SSIMLoss, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return 1 - _ssim(img1, img2, window, self.window_size, channel, self.size_average)
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding = window_size//2, groups=channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding=window_size//2, groups=channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def SSIM(x, y):
C1 = 0.01 ** 2
C2 = 0.03 ** 2
mu_x = nn.AvgPool2d(3, 1, 1)(x)
mu_y = nn.AvgPool2d(3, 1, 1)(y)
mu_x_mu_y = mu_x * mu_y
mu_x_sq = mu_x.pow(2)
mu_y_sq = mu_y.pow(2)
sigma_x = nn.AvgPool2d(3, 1, 1)(x * x) - mu_x_sq
sigma_y = nn.AvgPool2d(3, 1, 1)(y * y) - mu_y_sq
sigma_xy = nn.AvgPool2d(3, 1, 1)(x * y) - mu_x_mu_y
SSIM_n = (2 * mu_x_mu_y + C1) * (2 * sigma_xy + C2)
SSIM_d = (mu_x_sq + mu_y_sq + C1) * (sigma_x + sigma_y + C2)
SSIM = SSIM_n / SSIM_d
return torch.clamp((1 - SSIM) / 2, 0, 1)
def saliency_structure_consistency(x, y):
ssim = torch.mean(SSIM(x,y))
return ssim