-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRayTracingInOneWeekend.jl
471 lines (365 loc) · 14.9 KB
/
RayTracingInOneWeekend.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# This tries to stay faithful to the book's code
using Parameters, StaticArrays, LinearAlgebra, Images, SIMD, StructArrays, MLStyle, SmartAsserts
using Expronicon.ADT: @adt
# SmartAsserts.set_enabled(false)
Fast = false
const F = Float32
const N = 8 # vector width
const Point = SVector{3, F} # We use F so we dont have points of different types, otherwise Ray, Sphere become parametric types and HittableList needs to be constructed carefully to ensure same types everywhere. (can we somehow promote it)
const Spectrum = SVector{3, F}
@with_kw struct Ray @deftype Point
origin = zeros(Point)
direction = Point(0, 1, 0)
@smart_assert norm(direction) ≈ 1 "Ray direction not normalised for Ray with origin $origin and direction $direction"
end
@inline (ray::Ray)(t) = ray.origin + t * ray.direction
@adt Material begin
struct Lambertian
attenuation::Spectrum = ones(Spectrum)
end
struct Dielectric
attenuation::Spectrum = ones(Spectrum)
ior::F = 3//2
end
struct Metal
attenuation::Spectrum = ones(Spectrum)
fuzz::F = 0
end
end
struct hit_record
p::Point
normal::Point
material::Material
t::F
end
abstract type Primitive end
@kwdef struct Sphere <: Primitive
centre::Point = zeros(Point)
radius::F = 1//2
material::Material = Material.Lambertian()
end
@fastmath sphere_normal(sphere, position) = (position - sphere.centre) / sphere.radius
function StructArrays.staticschema(::Type{Point})
# Define the desired names and eltypes of the "fields"
return NamedTuple{(:x, :y, :z), fieldtypes(Point)...}
end
StructArrays.component(m::Point, key::Symbol) = getproperty(m, key)
StructArrays.createinstance(::Type{Point}, args...) = Point(args)
@kwdef struct hittable_list{F}
spheres::F = []
end
imagesize(height, aspectRatio) = (Int(height), round(Int, height / aspectRatio))
struct Camera
u::Point
v::Point
right::Point
down::Point
upper_left_corner::Point
pinhole_location::Point
lens_radius::F
end
function Camera(nx::Integer=400, ny=imagesize(nx, 16/9)[2], pinhole_location=Point(0, 0, 0), lookat=Point(0, 1, 0), up=Point(0, 0, 1), vfov=2atand(1), lens_radius=0, focus_distance=1)
aspect_ratio = nx/ny
camera_height = 2 * tand(vfov / 2) * focus_distance
camera_width = camera_height * aspect_ratio
w = normalize(lookat - pinhole_location)
u = normalize(w × up)
v = w × u
right = u * camera_width / nx
down = v * camera_height / ny
camera_centre = pinhole_location + w * focus_distance
upper_left_corner = camera_centre - right * nx / 2 - down * ny / 2
return Camera(u, v, right, down, upper_left_corner, pinhole_location, lens_radius)
end
@fastmath pixelWorldPosition(camera, index) = camera.upper_left_corner + (index[2] - 1) * camera.right + (index[1] - 1) * camera.down
@fastmath pixelWorldPosition(camera, x, y) = camera.upper_left_corner + (y - 1) * camera.right + (x - 1) * camera.down
@inline @fastmath norm2(x) = x ⋅ x
@inline @fastmath normalize_fast(x) = x * (1 / sqrt(norm2(x)))
function world_color(ray)
interp = (ray.direction.z + 1) / 2
return (1 - interp) * Spectrum(1, 1, 1) + interp * Spectrum(0.5, 0.7, 1.0) # Spectrum{3, Float64} instead of Spectrum{3, F} saves 1mb, 0.2s for nx=50.
end
@static if Fast
@inline @fastmath random_in_unit_disk() = normalize_fast(SVector{2, F}(randn(), randn()))
@inline @fastmath function random_in_unit_sphere()
while true
sample = Point(rand(F) * 2 - 1, rand(F) * 2 - 1, rand(F) * 2 - 1)
if norm2(sample) < 1
return sample
end
end
end
@inline @fastmath random_on_unit_sphere_surface() = normalize_fast(Point(randn(), randn(), randn()))
else
@inline @fastmath function random_in_unit_disk()
while true
p = SVector{2, F}(rand(F) * 2 - 1, rand(F) * 2 - 1)
# p = rand(SVector{2, F}) * 2 .- 1
if norm2(p) < 1
return p
end
end
end
@inline @fastmath function random_in_unit_sphere()
while true
sample = Point(rand(F) * 2 - 1, rand(F) * 2 - 1, rand(F) * 2 - 1)
# sample = @inline rand(Point) * 2 .- 1
if norm2(sample) < 1
return sample
end
end
end
@inline @fastmath function random_on_unit_sphere_surface()
tmp = random_in_unit_sphere()
return normalize_fast(tmp)
end
end
@fastmath function reflect(ray, n⃗, fuzz=0)
direction = ray.direction - 2(ray.direction ⋅ n⃗) * n⃗
# Is branching worth it?
if fuzz != 0
direction += fuzz * random_in_unit_sphere()
end
return normalize_fast(direction)
end
@fastmath function shick(cosθ, ior_ratio)
r0 = ((1 - ior_ratio) / (1 + ior_ratio))^2
return r0 + (1 - r0) * (1 - cosθ)^5
end
@fastmath function metal(ray, n⃗, fuzz=0)
@inline scattered = reflect(ray, n⃗, fuzz)
return scattered, scattered ⋅ n⃗ > 0 # check if scatterd direction is into the object
end
@fastmath function glass(ray, n⃗, ior)
air_ior = 1
cosθ = - ray.direction ⋅ n⃗
into = cosθ > 0
sinθ = sqrt(max(1 - cosθ^2, zero(F)))
@smart_assert !isnan(sinθ)
if into
ior_ratio = air_ior / ior
else
ior_ratio = ior / air_ior
n⃗ *= -1
cosθ *= -1
end
if (ior_ratio * sinθ > 1) || (rand(F) < shick(cosθ, ior_ratio))
return reflect(ray, n⃗)
else
Rperp = ior_ratio * (ray.direction + cosθ * n⃗)
Rpar = - sqrt(max(1 - norm2(Rperp), zero(F))) * n⃗
@smart_assert !isnan(Rpar)
return normalize_fast(Rperp + Rpar)
end
end
@fastmath function lambertian(ray, n⃗)
random = random_on_unit_sphere_surface()
vector = n⃗ + random
if all(vector .≈ 0)
vector = n⃗
end
direction = normalize_fast(vector)
return direction
end
@generated function getBits(mask::SIMD.Vec{N, Bool}) where N #This reverses the bits
s = """
%mask = trunc <$N x i8> %0 to <$N x i1>
%res = bitcast <$N x i1> %mask to i$N
ret i$N %res
"""
return :(
$(Expr(:meta, :inline));
Base.llvmcall($s, UInt8, Tuple{SIMD.LVec{N, Bool}}, mask.data)
)
end
function hor_min(x::SIMD.Vec{8, F}) where F
@fastmath a = shufflevector(x, Val((4, 5, 6, 7, :undef, :undef, :undef, :undef))) # high half
@fastmath b = min(a, x)
@fastmath a = shufflevector(b, Val((2, 3, :undef, :undef, :undef, :undef, :undef, :undef)))
@fastmath b = min(a, b)
@fastmath a = shufflevector(b, Val((1, :undef, :undef, :undef, :undef, :undef, :undef, :undef)))
@fastmath b = min(a, b)
return @inbounds b[1]
end
@generated function sext(::Type{F}, x::SIMD.Vec{N, Bool}) where {N,F}
t = SIMD.Intrinsics.llvm_type(F)
s = """
%2 = trunc <$N x i8> %0 to <$N x i1>
%3 = sext <$N x i1> %2 to <$N x $t>
ret <$N x $t> %3
"""
return :(
$(Expr(:meta,:inline));
Vec(Base.llvmcall($s, SIMD.LVec{$N,$F}, Tuple{SIMD.LVec{$N,Bool}}, x.data))
)
end
@inline @fastmath function SIMD.any(x::SIMD.Vec{8, Bool})
y = SIMD.Intrinsics.bitcast(SIMD.LVec{8, Float32}, sext(Int32, x).data)
return ccall("llvm.x86.avx.vtestz.ps.256", llvmcall, Int32, (SIMD.LVec{8, Float32}, SIMD.LVec{8, Float32}), y, y) == 0
end
const initialRecord = hit_record(zeros(Point), normalize(ones(Point)), Sphere().material, Inf)
@fastmath function findSceneIntersection(r, hittable_list, tmin, tmax)
hitT = SIMD.Vec{N, F}(tmax)
laneIndices = SIMD.Vec{N, Int32}(Int32.((1, 2, 3, 4, 5, 6, 7, 8)))
minIndex = SIMD.Vec{N, Int32}(0)
@inbounds @fastmath for lane in LoopVecRange{N}(hittable_list.spheres, unsafe=true)
cox = hittable_list.spheres.centre.x[lane] - r.origin.x
coy = hittable_list.spheres.centre.y[lane] - r.origin.y
coz = hittable_list.spheres.centre.z[lane] - r.origin.z
neg_half_b = r.direction.x * cox + r.direction.y * coy
neg_half_b += r.direction.z * coz
c = cox*cox + coy*coy
c += coz*coz
c -= hittable_list.spheres.radius[lane] * hittable_list.spheres.radius[lane]
quarter_discriminant = neg_half_b^2 - c
isDiscriminantPositive = quarter_discriminant > 0
if any(isDiscriminantPositive)
@fastmath sqrtd = sqrt(quarter_discriminant) # When using fastmath, negative values just give 0
root = neg_half_b - sqrtd
root2 = neg_half_b + sqrtd
t = vifelse(root > tmin, root, root2)
newMinT = isDiscriminantPositive & (tmin < t) & (t < hitT)
hitT = vifelse(newMinT, t, hitT)
minIndex = vifelse(newMinT, laneIndices, minIndex)
end
laneIndices += N
end
minHitT = hor_min(hitT)
if minHitT < tmax
@inbounds i = minIndex[trailing_zeros(getBits(hitT == minHitT)) + 1]
position = r(minHitT)
@inbounds sphere = hittable_list.spheres[i]
normal = sphere_normal(sphere, position)
return hit_record(position, normal, sphere.material, minHitT)
else
return initialRecord
end
end
@fastmath function ray_color(r, world, depth, tmin=1e-4, tmax=Inf)
accumulated_attenuation = ones(Spectrum)
for _ in 1:depth
record = findSceneIntersection(r, world, tmin, tmax)
@smart_assert !any(isnan.(accumulated_attenuation)) "$accumulated_attenuation"
if record.t == tmax # nothing hit, t from initialRecord
@smart_assert all(world_color(r) .>= 0)
return accumulated_attenuation .* world_color(r)
else
@smart_assert isapprox(norm(record.normal), 1; atol=1e-2) "$(record.normal)"
@fastmath @inline (direction, scatterAgain, attenuation) = @match record.material begin
Material.Lambertian(attenuation) => (lambertian(r, record.normal), true, attenuation)
Material.Dielectric(attenuation, ior) => (glass(r, record.normal, ior), true, attenuation)
Material.Metal(attenuation, fuzz) => (metal(r, record.normal, fuzz)..., attenuation)
end
r = Ray(record.p, direction)
accumulated_attenuation = accumulated_attenuation .* attenuation
end
end
return zeros(Spectrum)
end
function scene_random_spheres()
HittableList = [Sphere([0, 0, -1000], 1000, Material.Lambertian([.5, .5, .5]))]
for a in -11:10, b in -11:10
choose_mat = rand()
center = [a + 0.9*rand(), -(b + 0.9*rand()), 0.2]
# skip spheres too close?
if norm(center - SA[4,0, 0.2]) < 0.9 continue end
if choose_mat < 4//5
# lambertian
albedo = rand(Spectrum) .* rand(Spectrum)
push!(HittableList, Sphere(center, 1//5, Material.Lambertian(albedo)))
elseif choose_mat < 95//100
# metal
albedo = rand(Spectrum) / 2 .+ 1/2
fuzz = rand() * 5
push!(HittableList, Sphere(center, 0.2, Material.Metal(albedo, fuzz)))
else
# glass
push!(HittableList, Sphere(center, 0.2, Material.Dielectric()))
end
end
push!(HittableList, Sphere([0,0,1], 1, Material.Dielectric()))
push!(HittableList, Sphere([-4,0,1], 1, Material.Lambertian([0.4,0.2,0.1])))
push!(HittableList, Sphere([4,0,1], 1, Material.Metal([0.7,0.6,0.5], 0)))
append!(HittableList, repeat([Sphere(zeros(Point), 0, Material.Lambertian())], (N - mod1(length(HittableList), N))))
tmp = StructArray(HittableList, unwrap = F -> (F<:AbstractVector))
return hittable_list(tmp);
end
@fastmath function renderRay(HittableList, maxDepth, pixel_position, camera)
random_pixel_position = pixel_position + rand(F) * camera.right + rand(F) * camera.down
defocus_random = camera.lens_radius * random_in_unit_disk()
defocus_offset = defocus_random[1] * camera.u + defocus_random[2] * camera.v
ray = Ray(camera.pinhole_location + defocus_offset, normalize_fast(random_pixel_position - camera.pinhole_location - defocus_offset))
return ray_color(ray, HittableList, maxDepth)
end
function render!(img, HittableList, camera=Camera(); samples_per_pixel=100, maxDepth=16, parallel=true)
if parallel == true
@sync for j in axes(img, 2)
Threads.@spawn @inbounds for i in axes(img, 1)
for sample in 1:samples_per_pixel
@inbounds img[i, j] += renderRay(HittableList, maxDepth, pixelWorldPosition(camera, i, j), camera)
end
@inbounds img[i, j] /= samples_per_pixel
end
end
else
map!(index -> sum(sample -> renderRay(HittableList, maxDepth, pixelWorldPosition(camera, index), camera), 1:samples_per_pixel) / samples_per_pixel, img, CartesianIndices(img))
end
return nothing
end
spectrumToRGB(img) = map(x -> RGB(sqrt.(x)...), img)
function setup(resolution=1920/2)
HittableList = scene_random_spheres();
spectrum_img = zeros(Spectrum, reverse(imagesize(resolution, 16//9))...)
camera = Camera(reverse(size(spectrum_img))..., [13, -3, 2], [0, 0, 0], [0, 0, 1], 20, 0.05, 10)
return HittableList, spectrum_img, camera
end
function production(parallel=true)
scene, spectrum_img, camera = setup()
@time render!(spectrum_img, scene, camera, samples_per_pixel=10, parallel=parallel)
return spectrumToRGB(spectrum_img)
end
function test(parallel=true)
scene, spectrum_img, camera = setup(1920/10)
@time render!(spectrum_img, scene, camera, samples_per_pixel=5, parallel=parallel)
return spectrumToRGB(spectrum_img)
end
function claforte(parallel=true)
scene, spectrum_img, camera = setup(1920)
@time render!(spectrum_img, scene, camera, samples_per_pixel=1000, parallel=parallel)
return spectrumToRGB(spectrum_img)
end
# function profview(parallel=true)
# scene, spectrum_img, camera = setup()
# @profview render!(spectrum_img, scene, camera, samples_per_pixel=10, parallel=parallel)
# return spectrumToRGB(spectrum_img)
# end
# function profview_allocs(parallel=true)
# scene, spectrum_img, camera = setup()
# @profview_allocs render!(spectrum_img, scene, camera, samples_per_pixel=10, parallel=parallel)
# return spectrumToRGB(spectrum_img)
# end
# using Profile, PProf
# function profile()
# HittableList, spectrum_img, camera = setup(10)
# render!(spectrum_img, HittableList, camera, samples_per_pixel=10)
# Profile.Allocs.clear();
# Profile.Allocs.@profile sample_rate=1 render!(spectrum_img, scene, camera)
# PProf.Allocs.pprof(from_c=false, webport=8080)
# end
using BenchmarkTools
function benchmark(;print=false, parallel=true)
scene, spectrum_img, camera = setup()
if parallel != false
display(@benchmark render!($spectrum_img, $scene, $camera, samples_per_pixel=$10, parallel=$parallel) teardown=sleep(1) seconds=20)
else
display(@benchmark render!($spectrum_img, $scene, $camera, samples_per_pixel=$10, parallel=$parallel))
end
rgb_img = spectrumToRGB(spectrum_img)
if print
rgb_img |> display
end
return nothing
end
# using Cthulhu
# @descend test()
# @descend ray_color(Ray(), setup() |> first, 10)