-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_WHU.py
365 lines (293 loc) · 16.7 KB
/
train_WHU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import argparse
import torch
import os
import datetime
from tensorboardX import SummaryWriter
import sys
from dataset import find_dataset_def
import torch.backends.cudnn as cudnn
from networks.casmvs import CascadeMVSNet
from networks.ucs import UCSNet
from networks.casred import CascadeREDNet, Infer_CascadeREDNet
from networks.stsat import ST_SatMVS, Infer_CascadeREDNet
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
import time
from tools.utils import *
from dataset.data_io import save_pfm
import matplotlib.pyplot as plt
from networks.loss import cas_mvsnet_loss, STsatmvsloss
cudnn.benchmark = True
parser = argparse.ArgumentParser(description='A PyTorch Implementation')
parser.add_argument('--mode', default='train', help='train or test', choices=['train', 'test', 'profile'])
# parser.add_argument('--model', default="casmvs", help='select model', choices=['red', "casmvs", "ucs"])
parser.add_argument('--model', default="samsat", help='select model', choices=['SAMsat', 'red', "casmvs", "ucs"])
parser.add_argument('--geo_model', default="pinhole", help='select dataset', choices=["rpc", "pinhole"])
parser.add_argument('--use_qc', default=False, help="whether to use Quaternary Cubic Form for RPC warping.")
# parser.add_argument('--dataset_root', default='/home/chenziyang/MVS/MVSrs', help='dataset root')
parser.add_argument('--dataset_root', default='/remote-home/Cs_ai_qj_new/chenziyang/MVS/MVSrs/WHU_MVS_dataset', help='dataset root')
# parser.add_argument('--which', default='WHU', choices=['WHU', 'TLC'], help='dataset type')
# parser.add_argument('--loadckpt', default="checkpoints/casmvs/rpc/model.ckpt", help='load a specific checkpoint')
parser.add_argument('--loadckpt', help='load a specific checkpoint')
parser.add_argument('--logdir', default='./checkpoints', help='the directory to save checkpoints/logs')
parser.add_argument('--resume', default=False, help='continue to train the model')
# input parameters
parser.add_argument('--view_num', type=int, default=5, help='Number of images.')
parser.add_argument('--ref_view', type=int, default=4)
parser.add_argument('--batch_size', type=int, default=2, help='train batch size')
# Cascade parameters
parser.add_argument('--ndepths', type=str, default="64,32,8", help='ndepths')
# parser.add_argument('--ndepths', type=str, default="64,48,32,8", help='ndepths')
parser.add_argument('--min_interval', type=float, default=2.5, help='min_interval in the bottom stage')
# parser.add_argument('--depth_inter_r', type=str, default="8,4,2,1", help='depth_intervals_ratio')
parser.add_argument('--depth_inter_r', type=str, default="4,2,1", help='depth_intervals_ratio')
parser.add_argument('--lamb', type=float, default=1.5, help="lamb in ucs-net")
parser.add_argument('--dlossw', type=str, default="0.5,1.0,2.0", help='depth loss weight for different stage')
# parser.add_argument('--cr_base_chs', type=str, default="8,8,8,8", help='cost regularization base channels')
parser.add_argument('--cr_base_chs', type=str, default="8,8,8", help='cost regularization base channels')
# network architecture
parser.add_argument('--epochs', type=int, default=30, help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--lrepochs', type=str, default="10,12,14:2",
help='epoch ids to downscale lr and the downscale rate')
parser.add_argument('--wd', type=float, default=0.0, help='weight decay')
parser.add_argument('--summary_freq', type=int, default=50, help='print and summary frequency')
parser.add_argument('--save_freq', type=int, default=1, help='save checkpoint frequency')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed')
parser.add_argument('--gpu_id', type=str, default="1")
# parse arguments and check
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
# trainpath = "{}/open_dataset_{}/train".format(args.dataset_root, args.geo_model)
trainpath = "{}/train".format(args.dataset_root)
# testpath = "{}/open_dataset_{}/test".format(args.dataset_root, args.geo_model)
testpath = "{}/test".format(args.dataset_root)
if args.resume:
assert args.mode == "train"
assert args.loadckpt is None
if testpath is None:
testpath = trainpath
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cur_log_dir = os.path.join(args.logdir, "{}/{}".format(args.model, args.geo_model)).replace("\\", "/")
ck_dir = os.path.join(cur_log_dir, "train").replace("\\", "/")
if not os.path.exists(ck_dir):
os.makedirs(ck_dir)
# create logger for mode "train" and "testall"
if args.mode == "train":
if not os.path.isdir(cur_log_dir):
os.makedirs(cur_log_dir)
current_time_str = str(datetime.datetime.now().strftime('%Y%m%d_%H%M%S'))
print("current time", current_time_str)
print("creating new summary file")
logger = SummaryWriter(cur_log_dir)
print("argv:", sys.argv[1:])
print_args(args)
# dataset, dataloader
MVSDataset = find_dataset_def(args.geo_model)
# print('!!!!!!',args.which)
train_dataset = MVSDataset(trainpath, "train", args.which, args.view_num, ref_view=args.ref_view, use_qc=args.use_qc)
test_dataset = MVSDataset(testpath, "test", args.which, args.view_num, ref_view=args.ref_view, use_qc=args.use_qc)
TrainImgLoader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=0, drop_last=True)
TestImgLoader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=0, drop_last=False)
# model
model = None
if args.model == "samsat":
model = ST_SatMVS(min_interval=args.min_interval,
ndepths=[int(nd) for nd in args.ndepths.split(",") if nd],
depth_interals_ratio=[float(d_i) for d_i in args.depth_inter_r.split(",") if d_i],
cr_base_chs=[int(ch) for ch in args.cr_base_chs.split(",") if ch],
geo_model=args.geo_model, use_qc=args.use_qc)
elif args.model == "casmvs":
model = CascadeMVSNet(min_interval=args.min_interval,
ndepths=[int(nd) for nd in args.ndepths.split(",") if nd],
depth_interals_ratio=[float(d_i) for d_i in args.depth_inter_r.split(",") if d_i],
cr_base_chs=[int(ch) for ch in args.cr_base_chs.split(",") if ch],
geo_model=args.geo_model, use_qc=args.use_qc)
print("===============> Model: Cascade MVS Net ===========>")
elif args.model == "ucs":
model = UCSNet(lamb=args.lamb, stage_configs=[int(nd) for nd in args.ndepths.split(",") if nd],
base_chs=[int(ch) for ch in args.cr_base_chs.split(",") if ch],
geo_model=args.geo_model, use_qc=args.use_qc)
print("===============> Model: UCS-Net ===========>")
elif args.model == "red":
model = CascadeREDNet(min_interval=args.min_interval,
ndepths=[int(nd) for nd in args.ndepths.split(",") if nd],
depth_interals_ratio=[float(d_i) for d_i in args.depth_inter_r.split(",") if d_i],
cr_base_chs=[int(ch) for ch in args.cr_base_chs.split(",") if ch],
geo_model=args.geo_model, use_qc=args.use_qc)
print("===============> Model: Cascade RED Net ===========>")
else:
raise Exception("{}? Not implemented yet!".format(args.model))
if args.mode in ["train", "test"]:
model = nn.DataParallel(model)
model.cuda()
# model_loss = mvsnet_loss # MVSNet and RMVSNet
# model_loss = cas_mvsnet_loss # CascadeRMVSNet
model_loss = STsatmvsloss # CascadeRMVSNet
# optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=args.wd)
optimizer = optim.RMSprop([{'params': model.parameters(), 'initial_lr': args.lr}],
lr=args.lr, alpha=0.9, weight_decay=args.wd)
# load parameters
start_epoch = 1
if (args.mode == "train" and args.resume) or (args.mode == "test" and not args.loadckpt):
saved_models = [fn for fn in os.listdir(cur_log_dir) if fn.endswith(".ckpt") and len(fn.split("_")) == 3]
# print(saved_models)
saved_models = sorted(saved_models, key=lambda x: int(x.split('_')[1].split(".")[0]))
# use the latest checkpoint file
# print(saved_models)
loadckpt = os.path.join(cur_log_dir, saved_models[-1])
print("resuming", loadckpt)
state_dict = torch.load(loadckpt)
model.load_state_dict(state_dict['model'])
optimizer.load_state_dict(state_dict['optimizer'])
start_epoch = int(saved_models[-1].split("_")[1].split(".")[0]) + 1
# print(saved_models)
elif args.loadckpt:
# load checkpoint file specified by args.loadckpt
print("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict['model'])
print("start at epoch {}".format(start_epoch))
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
# main function
def train():
milestones = [int(epoch_idx) for epoch_idx in args.lrepochs.split(':')[0].split(',')]
lr_gamma = 1 / float(args.lrepochs.split(':')[1])
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=lr_gamma,
last_epoch=start_epoch - 1)
for epoch_idx in range(start_epoch, args.epochs):
print('Epoch {}:'.format(epoch_idx))
global_step = len(TrainImgLoader) * epoch_idx
# training
for batch_idx, sample in enumerate(TrainImgLoader):
start_time = time.time()
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
do_summary = global_step % args.summary_freq == 0
loss, scalar_outputs, image_outputs = train_sample(sample, lr_scheduler, detailed_summary=do_summary)
if do_summary:
save_scalars(logger, 'train', scalar_outputs, global_step)
save_images(logger, 'train', image_outputs, global_step)
print(
'Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, time = {:.3f}, train_result = {}'.format(
epoch_idx, args.epochs, batch_idx, len(TrainImgLoader), loss,
time.time() - start_time, scalar_outputs))
del scalar_outputs, image_outputs
# testing
avg_test_scalars = DictAverageMeter()
for batch_idx, sample in enumerate(TestImgLoader):
start_time = time.time()
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
do_summary = global_step % args.summary_freq == 0
loss, scalar_outputs, image_outputs = test_sample(sample, detailed_summary=do_summary)
if do_summary:
save_scalars(logger, 'test', scalar_outputs, global_step)
save_images(logger, 'test', image_outputs, global_step)
avg_test_scalars.update(scalar_outputs)
print('Epoch {}/{}, Iter {}/{}, test loss = {:.3f}, time = {:3f}, {}'.format(epoch_idx, args.epochs, batch_idx,
len(TestImgLoader), loss,
time.time() - start_time, scalar_outputs))
del scalar_outputs, image_outputs
save_scalars(logger, 'fulltest', avg_test_scalars.mean(), global_step)
print("avg_test_scalars:", avg_test_scalars.mean())
abs_depth_error = avg_test_scalars.mean()["abs_depth_acc"]
train_record = open(cur_log_dir + '/train_record.txt', "a+")
train_record.write(str(epoch_idx) + ' ' + str(avg_test_scalars.mean()) + '\n')
train_record.close()
# checkpoint
if (epoch_idx + 1) % args.save_freq == 0:
torch.save({
'epoch': epoch_idx,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()},
"{}/model_{:0>6}.ckpt".format(cur_log_dir, epoch_idx, abs_depth_error))
# gc.collect()alars:", avg_test_scalars.mean())
# gc.collect()
def test():
# create output folder
output_folder = os.path.join(testpath, 'height_result')
if not os.path.isdir(output_folder):
os.mkdir(output_folder)
avg_test_scalars = DictAverageMeter()
total_time = 0
for batch_idx, sample in enumerate(TestImgLoader):
bview = sample['out_view'][0]
bname = sample['out_name'][0]
start_time = time.time()
loss, scalar_outputs, image_outputs = test_sample(sample, detailed_summary=True)
avg_test_scalars.update(scalar_outputs)
scalar_outputs = {k: float("{0:.6f}".format(v)) for k, v in scalar_outputs.items()}
total_time += time.time() - start_time
print("Iter {}/{}, {}, time = {:3f}, test results = {}".format(batch_idx, len(TestImgLoader),
bname, time.time() - start_time, scalar_outputs))
# save results
depth_est = np.float32(np.squeeze(tensor2numpy(image_outputs["depth_est"])))
prob = np.float32(np.squeeze(tensor2numpy(image_outputs["photometric_confidence"])))
depth_gt = sample['depth']['stage3']
mask = sample['mask']['stage3']
depth_gt = np.float32(np.squeeze(tensor2numpy(depth_gt)))
mask = (np.squeeze(tensor2numpy(mask))).astype(np.int)
depth_gt[mask < 0.5] = -999.0
plt.imshow(depth_est)
plt.show()
del scalar_outputs, image_outputs
print("final, time = {:3f}, test results = {}".format(total_time, avg_test_scalars.mean()))
def train_sample(sample, lr_scheduler, detailed_summary=False):
model.train()
optimizer.zero_grad()
sample_cuda = tocuda(sample)
depth_gt_ms = sample_cuda["depth"]
mask_ms = sample_cuda["mask"]
num_stage = len([int(nd) for nd in args.ndepths.split(",") if nd])
depth_gt = depth_gt_ms["stage{}".format(num_stage)]
mask = mask_ms["stage{}".format(num_stage)]
outputs = model(sample_cuda["imgs"], sample_cuda["cam_para"], sample_cuda["depth_values"])
# depth_est = outputs["stage3"]["depth"]
depth_est = outputs["stage3"]["depth_filtered"]
loss, depth_loss = model_loss(outputs, depth_gt_ms, mask_ms, dlossw=[float(e) for e in args.dlossw.split(",") if e], depth_values=sample_cuda["depth_values"])
loss.backward()
optimizer.step()
lr_scheduler.step()
scalar_outputs = {"loss": loss, "depth_loss": depth_loss}
image_outputs = {"depth_est": depth_est, "depth_gt": depth_gt,
"ref_img": sample["imgs"][:, 0],
"mask": sample["mask"]["stage1"]}
if detailed_summary:
image_outputs["errormap"] = (depth_est - depth_gt).abs() * mask
scalar_outputs["abs_depth_error"] = AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5, 250.0)
scalar_outputs["thres1.0m_error"] = Thres_metrics(depth_est, depth_gt, mask > 0.5, 1.0)
scalar_outputs["thres2.5m_error"] = Thres_metrics(depth_est, depth_gt, mask > 0.5, 2.5)
scalar_outputs["thres7.5m_error"] = Thres_metrics(depth_est, depth_gt, mask > 0.5, 7.5)
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
@make_nograd_func
def test_sample(sample, detailed_summary=True):
model.eval()
sample_cuda = tocuda(sample)
depth_gt_ms = sample_cuda["depth"]
mask_ms = sample_cuda["mask"]
num_stage = len([int(nd) for nd in args.ndepths.split(",") if nd])
depth_gt = depth_gt_ms["stage{}".format(num_stage)]
mask = mask_ms["stage{}".format(num_stage)]
outputs = model(sample_cuda["imgs"], sample_cuda["cam_para"], sample_cuda["depth_values"])
depth_est = outputs["stage3"]["depth"]
photometric_confidence = outputs["stage3"]["photometric_confidence"]
loss, depth_loss = model_loss(outputs, depth_gt_ms, mask_ms, dlossw=[float(e) for e in args.dlossw.split(",") if e], depth_values=sample_cuda["depth_values"])
scalar_outputs = {"loss": loss, "depth_loss": depth_loss}
image_outputs = {"depth_est": depth_est,
"photometric_confidence": photometric_confidence,
"depth_gt": sample["depth"]["stage1"],
"ref_img": sample["imgs"][:, 0],
"mask": sample["mask"]["stage1"]}
if detailed_summary:
image_outputs["errormap"] = (depth_est - depth_gt).abs() * mask
scalar_outputs["abs_depth_acc"] = AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5, 250.0)
scalar_outputs["1.0m_acc"] = Thres_metrics(depth_est, depth_gt, mask > 0.5, 1.0) #0.6
scalar_outputs["2.5m_acc"] = Thres_metrics(depth_est, depth_gt, mask > 0.5, 2.5)
scalar_outputs["7.5m_acc"] = Thres_metrics(depth_est, depth_gt, mask > 0.5, 7.5)
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
if __name__ == '__main__':
if args.mode == "train":
train()
elif args.mode == "test":
test()