-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsingle_gpu.py
82 lines (67 loc) · 2.73 KB
/
single_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from datautils import MyTrainDataset
class Trainer:
def __init__(
self,
model: torch.nn.Module,
train_data: DataLoader,
optimizer: torch.optim.Optimizer,
gpu_id: int,
save_every: int,
) -> None:
self.gpu_id = gpu_id
self.model = model.to(gpu_id)
self.train_data = train_data
self.optimizer = optimizer
self.save_every = save_every
def _run_batch(self, source, targets):
self.optimizer.zero_grad()
output = self.model(source)
loss = F.cross_entropy(output, targets)
loss.backward()
self.optimizer.step()
def _run_epoch(self, epoch):
b_sz = len(next(iter(self.train_data))[0])
print(f"[GPU{self.gpu_id}] Epoch {epoch} | Batchsize: {b_sz} | Steps: {len(self.train_data)}")
for source, targets in self.train_data:
source = source.to(self.gpu_id)
targets = targets.to(self.gpu_id)
self._run_batch(source, targets)
def _save_checkpoint(self, epoch):
ckp = self.model.state_dict()
PATH = "checkpoint.pt"
torch.save(ckp, PATH)
print(f"Epoch {epoch} | Training checkpoint saved at {PATH}")
def train(self, max_epochs: int):
for epoch in range(max_epochs):
self._run_epoch(epoch)
if epoch % self.save_every == 0:
self._save_checkpoint(epoch)
def load_train_objs():
train_set = MyTrainDataset(2048) # load your dataset
model = torch.nn.Linear(20, 1) # load your model
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
return train_set, model, optimizer
def prepare_dataloader(dataset: Dataset, batch_size: int):
return DataLoader(
dataset,
batch_size=batch_size,
pin_memory=True,
shuffle=True
)
def main(device, total_epochs, save_every, batch_size):
dataset, model, optimizer = load_train_objs()
train_data = prepare_dataloader(dataset, batch_size)
trainer = Trainer(model, train_data, optimizer, device, save_every)
trainer.train(total_epochs)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='simple distributed training job')
parser.add_argument('total_epochs', default=10, type=int, help='Total epochs to train the model')
parser.add_argument('save_every', default=32, type=int, help='How often to save a snapshot')
parser.add_argument('--batch_size', default=32, help='Input batch size on each device (default: 32)')
args = parser.parse_args()
device = 0 # shorthand for cuda:0
main(device, args.total_epochs, args.save_every, args.batch_size)