-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMS_Model_LSTM_peephole_tanh.py
566 lines (354 loc) · 13.8 KB
/
MS_Model_LSTM_peephole_tanh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import numpy as np
import os
class MS_Model_LSTM:
def __init__(self,n_a=128,n_x=49,n_y=49,max_val=0.8):
self.n_a = n_a
self.n_x = n_x
self.n_y = n_y
self.maxValue = max_val
self.Train_X = None
self.Train_Y = None
def load_data(self):
"""
X,Y: farthest --> latest
"""
path = os.getcwd() + "/" + "Data" + "/" + "MarkSixData.txt"
X = np.loadtxt(path,delimiter=",",dtype=int)
res = []
for row in reversed(range(X.shape[0])):
vec = np.zeros((self.n_x,1))
for num in X[row]:
vec[num-1] = 1
res.append(vec)
self.Train_X = np.squeeze(np.array(res))
self.Train_Y = self.Train_X[1:].copy()
def initialize_Adam(self,gradients):
#Set up
v = {}
s = {}
for grad in gradients.keys():
v[grad] = np.zeros_like(gradients[grad])
s[grad] = np.zeros_like(gradients[grad])
return v,s
def update_parameters_with_Adam(self,gradients,parameters,v,s,i,beta1=0.9,beta2=0.999,eplison=1e-8,learning_rate=0.001):
"""
Adam update parameters per ITERATIONS!!!
***Important: v,s and v_corrected,s_corrected should be treated separately
"""
#Important: v,s and v_corrected,s_corrected should be treated separately
#Set up
v_corrected = {}
s_corrected = {}
#Update parameters
for para in parameters:
grad = "d" + para
#Update v
v[grad] = beta1*v[grad]+(1-beta1)*gradients[grad]
v_corrected[grad] = v[grad]/(1-beta1**i)
#update s
s[grad] = beta2*s[grad]+(1-beta2)*((gradients[grad])**2)
s_corrected[grad] = s[grad]/(1-beta2**i)
#update parameters
parameters[para] -= learning_rate*(v_corrected[grad]/np.sqrt(s_corrected[grad]+eplison))
return parameters,v,s
def sigmoid(self,z):
return np.where(z>=0,(1/(1+np.exp(-z))),(np.exp(z)/(1 + np.exp(z))))
def relu(self,z):
return np.maximum(z,0)
def activation_derivative(self,z,activation="tanh"):
if activation == "tanh":
return (1-((np.tanh(z))**2))
elif activation == "relu":
drelu = np.zeros(z.shape)
drelu[z>=0] = 1
return drelu
elif activation == "sigmoid":
g = self.sigmoid(z)
return g*(1-g)
else:
print("Invalid Activation")
def gradient_clip(self,gradients,maxValue):
for grad in gradients.values():
np.clip(a=grad,a_min=-maxValue,a_max=maxValue,out=grad)
return gradients
def initialize_parameters(self,n_a,n_x,n_y):
"""
Parameters includes:
c_st:
Wca : (n_a,n_a)
Wcx : (n_a,n_x)
bc : (n_a,1)
Gamma_u:
Wua : (n_a,n_a)
Wux : (n_a,n_x)
Wuc : (n_a,n_a)
bu : (n_a,1)
Gamma_f:
Wfa : (n_a,n_a)
Wfx : (n_a,n_x)
Wfc : (n_a,n_a)
bf : (n_a,1)
Gamma_o:
Woa : (n_a,n_a)
Wox : (n_a,n_x)
bo : (n_a,1)
y_hat:
Wya: (n_y,n_a)
by: (n_y,1)
"""
parameters = {}
parameters["Wca"] = np.random.randn(n_a,n_a)
parameters["Wcx"] = np.random.randn(n_a,n_x)
parameters["bc"] = np.zeros((n_a,1))
parameters["Wua"] = np.random.randn(n_a,n_a)
parameters["Wux"] = np.random.randn(n_a,n_x)
parameters["Wuc"] = np.random.randn(n_a,n_a)
parameters["bu"] = np.zeros((n_a,1))
parameters["Wfa"] = np.random.randn(n_a,n_a)
parameters["Wfx"] = np.random.randn(n_a,n_x)
parameters["Wfc"] = np.random.randn(n_a,n_a)
parameters["bf"] = np.zeros((n_a,1))
parameters["Woa"] = np.random.randn(n_a,n_a)
parameters["Wox"] = np.random.randn(n_a,n_x)
parameters["bo"] = np.zeros((n_a,1))
parameters["Wya"] = np.random.randn(n_y,n_a)
parameters["by"] = np.zeros((n_y,1))
return parameters
def LSTM_step_forward(self,c_prev,a_prev,x_t,y_t,parameters):
"""
c_prev : (n_a,1)
a_prev : (n_a,1)
x_t: (n_x,1)
y_t: (n_y,1)
"""
Wca = parameters["Wca"]
Wcx = parameters["Wcx"]
bc = parameters["bc"]
Wua = parameters["Wua"]
Wux = parameters["Wux"]
Wuc = parameters["Wuc"]
bu = parameters["bu"]
Wfa = parameters["Wfa"]
Wfx = parameters["Wfx"]
Wfc = parameters["Wfc"]
bf = parameters["bf"]
Woa = parameters["Woa"]
Wox = parameters["Wox"]
bo = parameters["bo"]
Wya = parameters["Wya"]
by = parameters["by"]
#~C_t
z = np.dot(Wca,a_prev)+np.dot(Wcx,x_t)+bc
c_st = np.tanh(z)
#Update Gate
z = np.dot(Wua,a_prev)+np.dot(Wux,x_t)+np.dot(Wuc,c_prev)+bu
Gamma_u = self.sigmoid(z)
#Forget Gate
z = np.dot(Wfa,a_prev)+np.dot(Wfx,x_t)+np.dot(Wfc,c_prev)+bf
Gamma_f = self.sigmoid(z)
#Output Gate
z = np.dot(Woa,a_prev)+np.dot(Wox,x_t)+bo
Gamma_o = self.sigmoid(z)
#Cells state t
c_t = Gamma_u*c_st+Gamma_f*c_prev
#Hidden state t
a_t = Gamma_o*np.tanh(c_t)
#y_hat prediction
z = np.dot(Wya,a_t)+by
y_hat = self.sigmoid(z)
cache = (y_hat,a_t,c_t,x_t,y_t,a_prev,c_prev,Gamma_o,Gamma_f,Gamma_u,c_st)
return a_t,c_t,y_hat,cache
def LSTM_forward(self,X,Y,a0,c0,parameters):
"""
X : (T_x,n_x)
Y : (T,n_y)
a0: (n_a,1)
"""
#Get Shape
T_x,n_x = X.shape
T,n_y = Y.shape
#Set up caches
caches = []
a = []
c = []
#initialize variable
loss = 0
a_next = a0.copy()
c_next = c0.copy()
for t in range(T):
#Get One Step data X input
x_t = X[t,:].reshape(n_x,1)
y_t = Y[t,:].reshape(n_y,1)
#Forward One Step
a_next,c_next,y_hat,cache_t = self.LSTM_step_forward(c_next,a_next,x_t,y_t,parameters)
#Save Cell and hidden state
a.append(a_next)
c.append(c_next)
#Update loss
loss = loss + np.sum(- y_t*np.log(y_hat)-(1-y_t)*np.log(1-y_hat))
#Save Cache
caches.append(cache_t)
return a,c,caches,loss
def LSTM_step_backward(self,da_next,dc_next,cache_t,parameters,gradients):
"""
cahce_t : (y_hat,a_t,c_t,x_t,y_t,a_prev,c_prev,Gamma_o,Gamma_f,Gamma_u,c_st)
"""
y_hat,a_t,c_t,x_t,y_t,a_prev,c_prev,Gamma_o,Gamma_f,Gamma_u,c_st = cache_t
Wca = parameters["Wca"]
Wcx = parameters["Wcx"]
Wua = parameters["Wua"]
Wux = parameters["Wux"]
Wuc = parameters["Wuc"]
Wfa = parameters["Wfa"]
Wfx = parameters["Wfx"]
Wfc = parameters["Wfc"]
Woa = parameters["Woa"]
Wox = parameters["Wox"]
Wya = parameters["Wya"]
dZy = y_hat - y_t
da_t = da_next + np.dot(Wya.T,dZy)
dc_t = dc_next + da_t*Gamma_o*(1-((np.tanh(c_t))**2))
dZf = dc_t*c_prev*Gamma_f*(1-Gamma_f)
dZu = dc_t*c_st*Gamma_u*(1-Gamma_u)
dZc = dc_t*Gamma_u*(1-((c_st)**2))
dZo = da_t*np.tanh(c_t)*Gamma_o*(1-Gamma_o)
gradients["dWya"] += np.dot(dZy,a_t.T)
gradients["dby"] += dZy
gradients["dWoa"] += np.dot(dZo,a_prev.T)
gradients["dWox"] += np.dot(dZo,x_t.T)
gradients["dbo"] += dZo
gradients["dWca"] += np.dot(dZc,a_prev.T)
gradients["dWcx"] += np.dot(dZc,x_t.T)
gradients["dbc"] += dZc
gradients["dWfa"] += np.dot(dZf,a_prev.T)
gradients["dWfx"] += np.dot(dZf,x_t.T)
gradients["dWfc"] += np.dot(dZf,c_prev.T)
gradients["dbf"] += dZf
gradients["dWua"] += np.dot(dZu,a_prev.T)
gradients["dWux"] += np.dot(dZu,x_t.T)
gradients["dWuc"] += np.dot(dZu,c_prev.T)
gradients["dbu"] += dZu
da_prev = np.dot(Woa.T,dZo)+np.dot(Wfa.T,dZf)+np.dot(Wua.T,dZu)+np.dot(Wca.T,dZc)
dc_prev = dc_t*Gamma_f+np.dot(Wfc.T,dZf)+np.dot(Wuc.T,dZu)
return gradients,da_prev,dc_prev
def LSTM_backward(self,parameters,caches,regularization_factor=0.1):
"""
cache:
cache1
cache2
.
.
.
c_st:
Wca : (n_a,n_a)
Wcx : (n_a,n_x)
bc : (n_a,1)
Gamma_u:
Wua : (n_a,n_a)
Wux : (n_a,n_x)
Wuc : (n_a,n_a)
bu : (n_a,1)
Gamma_f:
Wfa : (n_a,n_a)
Wfx : (n_a,n_x)
Wfc : (n_a,n_a)
bf : (n_a,1)
Gamma_o:
Woa : (n_a,n_a)
Wox : (n_a,n_x)
bo : (n_a,1)
y_hat:
Wya: (n_y,n_a)
by: (n_y,1)
"""
n_a,n_x,n_y = self.n_a,self.n_x,self.n_y
gradients = {}
#Set up
gradients["dWya"] = np.zeros((n_y,n_a))
gradients["dby"] = np.zeros((n_y,1))
gradients["dWoa"] = np.zeros((n_a,n_a))
gradients["dWox"] = np.zeros((n_a,n_x))
gradients["dbo"] = np.zeros((n_a,1))
gradients["dWca"] = np.zeros((n_a,n_a))
gradients["dWcx"] = np.zeros((n_a,n_x))
gradients["dbc"] = np.zeros((n_a,1))
gradients["dWfa"] = np.zeros((n_a,n_a))
gradients["dWfx"] = np.zeros((n_a,n_x))
gradients["dWfc"] = np.zeros((n_a,n_a))
gradients["dbf"] = np.zeros((n_a,1))
gradients["dWua"] = np.zeros((n_a,n_a))
gradients["dWux"] = np.zeros((n_a,n_x))
gradients["dWuc"] = np.zeros((n_a,n_a))
gradients["dbu"] = np.zeros((n_a,1))
#get shape
n_a,n_x = parameters["Wux"].shape
T = len(caches)
da_next = np.zeros((n_a,1))
dc_next = np.zeros((n_a,1))
for t in reversed(range(T)):
#Get Cache_t
cache_t = caches[t]
#Backward 1 step
gradients,da_next,dc_next = self.LSTM_step_backward(da_next,dc_next,cache_t,parameters,gradients)
#regularization
gradients["dWya"] = gradients["dWya"]/T + regularization_factor*parameters["Wya"]
gradients["dWoa"] = gradients["dWoa"]/T + regularization_factor*parameters["Woa"]
gradients["dWox"] = gradients["dWox"]/T + regularization_factor*parameters["Wox"]
gradients["dWca"] = gradients["dWca"]/T + regularization_factor*parameters["Wca"]
gradients["dWcx"] = gradients["dWcx"]/T + regularization_factor*parameters["Wcx"]
gradients["dWfa"] = gradients["dWfa"]/T + regularization_factor*parameters["Wfa"]
gradients["dWfx"] = gradients["dWfx"]/T + regularization_factor*parameters["Wfx"]
gradients["dWfc"] = gradients["dWfc"]/T + regularization_factor*parameters["Wfc"]
gradients["dWua"] = gradients["dWua"]/T + regularization_factor*parameters["Wua"]
gradients["dWux"] = gradients["dWux"]/T + regularization_factor*parameters["Wux"]
gradients["dWuc"] = gradients["dWuc"]/T + regularization_factor*parameters["Wuc"]
return gradients
def optimize(self,X,Y,a0,c0,parameters,v,s,i,regularization_factor=1,beta1=0.9,beta2=0.999,eplison=1e-8,learning_rate=0.001):
#Get shape
T_x,n_x = X.shape
T,n_y = Y.shape
#Forward Propogation
a,c,caches,loss = self.LSTM_forward(X,Y,a0,c0,parameters)
#Backward Propogation
gradients = self.LSTM_backward(parameters,caches,regularization_factor)
#gradient clipping
gradients = self.gradient_clip(gradients,self.maxValue)
#Update parameters
parameters,v,s = self.update_parameters_with_Adam(gradients,parameters,v,s,i,beta1,beta2,eplison,learning_rate)
return parameters,loss,a[-1],c[-1],v,s
def model(self,X,Y,iterations = 151,learning_rate=0.001,regularization_factor=0.1,beta1=0.9,beta2=0.999,eplison=1e-8,print_cost=False):
parameters = self.initialize_parameters(self.n_a,self.n_x,self.n_y)
a0 = np.random.randn(self.n_a,1)
c0 = np.random.randn(self.n_a,1)
T = Y.shape[0]
loss = 0
gradients = {}
#Set up
n_a,n_y,n_x = self.n_a,self.n_y,self.n_x
gradients["dWya"] = np.zeros((n_y,n_a))
gradients["dby"] = np.zeros((n_y,1))
gradients["dWoa"] = np.zeros((n_a,n_a))
gradients["dWox"] = np.zeros((n_a,n_x))
gradients["dbo"] = np.zeros((n_a,1))
gradients["dWca"] = np.zeros((n_a,n_a))
gradients["dWcx"] = np.zeros((n_a,n_x))
gradients["dbc"] = np.zeros((n_a,1))
gradients["dWfa"] = np.zeros((n_a,n_a))
gradients["dWfx"] = np.zeros((n_a,n_x))
gradients["dWfc"] = np.zeros((n_a,n_a))
gradients["dbf"] = np.zeros((n_a,1))
gradients["dWua"] = np.zeros((n_a,n_a))
gradients["dWux"] = np.zeros((n_a,n_x))
gradients["dWuc"] = np.zeros((n_a,n_a))
gradients["dbu"] = np.zeros((n_a,1))
v,s = self.initialize_Adam(gradients)
for i in range(iterations):
parameters,curr_loss,a0,c0,v,s = self.optimize(X,Y,a0,c0,parameters,v,s,i+1,regularization_factor,beta1,beta2,eplison,learning_rate)
#update loss
curr_loss = np.sum(curr_loss)
for para in parameters.values():
curr_loss = curr_loss #+ regularization_factor*(np.sum(para)**2)/2
loss = curr_loss/T
if print_cost and (i%50) == 0:
print("Loss :",loss)
return parameters,a0,c0