-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransformer.py
208 lines (178 loc) · 9.16 KB
/
Transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import utils
class selfattention(nn.Module):
def __init__(self) -> None:
super(selfattention,self).__init__()
def forward(self,q,k,v,mask,d_k=64):
score=torch.matmul(q,k.transpose(-1,-2))/np.sqrt(d_k)
score=torch.masked_fill(input=score,mask=mask,value=-1e9)
attention=nn.Softmax(-1)(score)
results=torch.matmul(score,v)
return results,attention
class MultiHeadAttention(nn.Module):
def __init__(self,n_head,d_k,d_q,d_v,d_model) -> None:
super().__init__()
self.n_head=n_head
self.d_k=d_k
self.d_q=d_q
self.d_v=d_v
self.d_model=d_model
self.W_k=nn.Linear(self.d_model,self.d_k*self.n_head)
self.W_q=nn.Linear(self.d_model,self.d_q*self.n_head)
self.W_v=nn.Linear(self.d_model,self.d_v*self.n_head)
self.attention=selfattention()
self.W_Last=nn.Linear(self.d_v*self.n_head,self.d_model)
self.LayerNorm=nn.LayerNorm(d_model)
def forward(self,k,q,v,mask,mask_mask=None):
residual = q #考虑残差
k=self.W_k(k).view(batch, -1, n_heads, d_k).transpose(1,2)
q=self.W_q(q).view(batch, -1, n_heads, d_q).transpose(1,2)
v=self.W_v(v).view(batch, -1, n_heads, d_v).transpose(1,2)
mask=mask.repeat(batch, n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]
output,attention=self.attention(k=k,q=q,v=v,mask=mask)
output=output.transpose(1, 2).contiguous().view(batch,src_len,self.n_head*self.d_q)#transpose之后需要contiguous
#transpose完之后再view,要不出来是错的
output=self.W_Last(output)
output=self.LayerNorm(output+residual)
return output,attention
class FeedForward(nn.Module):
def __init__(self,d_model,d_ff,kernel_size) -> None:
super().__init__()
self.conv1=nn.Conv1d(in_channels=d_model,out_channels=d_ff,kernel_size=kernel_size)
self.conv2=nn.Conv1d(in_channels=d_ff,out_channels=d_model,kernel_size=kernel_size)
self.Relu=nn.ReLU()
self.LayerNorm=nn.LayerNorm(d_model)
def forward(self,x):
residual = x #考虑残差
embedding=self.conv1(x.transpose(2,1))#因为是对句子的不同单词做卷积,所以sentences长度是后一个
embedding=self.conv2(embedding)
embedding=self.Relu(embedding).transpose(1,2)
embedding=self.LayerNorm(embedding+residual)
return embedding
class EncoderLayer(nn.Module):
def __init__(self,n_head,d_k,d_q,d_v,d_model,d_ff,kernel_size) -> None:
super().__init__()
self.n_head=n_head
self.d_k=d_k
self.d_q=d_q
self.d_v=d_v
self.d_model=d_model
self.d_ff=d_ff
self.kernel_size=kernel_size
self.Attention=MultiHeadAttention(n_head=self.n_head,d_k=self.d_k,d_q=self.d_q,d_v=self.d_v,d_model=self.d_model)
self.FeedForward=FeedForward(d_model=self.d_model,d_ff=d_ff,kernel_size=self.kernel_size)
def forward(self,x,mask):
feature,attention=self.Attention(k=x,q=x,v=x,mask=mask)
output=self.FeedForward(x=feature)
return output,attention
class Encoder(nn.Module):
def __init__(self,n_head,d_k,d_q,d_v,d_model,d_ff,kernel_size,vocal_size,LayerNum=6,src_len=5) -> None:
super(Encoder,self).__init__()
self.Layer_Num=Layer_Num
self.src_emb=nn.Embedding(num_embeddings=vocal_size,embedding_dim=d_model)
self.pos_emb = nn.Embedding.from_pretrained(utils.get_sinusoid_encoding_table(src_len+1, d_model),freeze=True)
self.layers=nn.ModuleList([EncoderLayer(n_head=n_heads,d_k=d_k,d_q=d_q,d_v=d_v,d_model=d_model,d_ff=d_ff,kernel_size=1) for i in range(LayerNum)])
def forward(self,x):
embeddingX=self.src_emb(x)+self.pos_emb(torch.tensor([1,2,3,4,0]))
mask = utils.get_attn_pad_mask(x,x)
attention_lists=[]
for i in range(Layer_Num):
embeddingX,attention=self.layers[i](embeddingX,mask)
attention_lists.append(attention)
return embeddingX,attention_lists
class DecoderLayer(nn.Module):
def __init__(self,n_head,d_k,d_q,d_v,d_model,d_ff,kernel_size) -> None:
super(DecoderLayer,self).__init__()
self.n_head=n_head
self.d_k=d_k
self.d_q=d_q
self.d_v=d_v
self.d_model=d_model
self.d_ff=d_ff
self.kernel_size=kernel_size
self.MaskAttention=MultiHeadAttention(n_head=self.n_head,d_k=self.d_k,d_q=self.d_q,d_v=self.d_v,d_model=self.d_model)
self.CrossAttention=MultiHeadAttention(n_head=self.n_head,d_k=self.d_k,d_q=self.d_q,d_v=self.d_v,d_model=self.d_model)
self.FeedForward=FeedForward(d_model=self.d_model,d_ff=d_ff,kernel_size=self.kernel_size)
def forward(self,decoder_input,encoder_output,mask,mask_mask):
feature1,attention1=self.MaskAttention(k=decoder_input,q=decoder_input,v=decoder_input,mask=mask)
feature2,attention2=self.CrossAttention(k=encoder_output,q=feature1,v=encoder_output,mask=mask_mask)
output=self.FeedForward(x=feature2)
return output,attention1,attention2
class Decoder(nn.Module):
def __init__(self,n_head,d_k,d_q,d_v,d_model,d_ff,kernel_size,vocal_size,LayerNum=6,src_len=5) -> None:
super(Decoder,self).__init__()
self.LayerNum=Layer_Num
self.n_head=n_head
self.d_k=d_k
self.d_q=d_q
self.d_v=d_v
self.d_model=d_model
self.d_ff=d_ff
self.kernel_size=kernel_size
self.src_emb=nn.Embedding(embedding_dim=self.d_model,num_embeddings=vocal_size+1)
self.pos_emb=nn.Embedding.from_pretrained(utils.get_sinusoid_encoding_table(src_len+1, d_model),freeze=True)
self.Layers=nn.ModuleList(DecoderLayer(n_head=n_heads,d_k=d_k,d_q=d_q,d_v=d_v,d_model=d_model,d_ff=d_ff,kernel_size=1) for i in range(Layer_Num))
def forward(self,encoder_output,decoder_input):
embeddingDecoderOuput=self.src_emb(decoder_input)+self.pos_emb(torch.LongTensor([[5,1,2,3,4]]))
mask=utils.get_attn_pad_mask(decoder_input,decoder_input)
mask_mask=utils.get_attn_subsequent_mask(decoder_input)
dec_self_attns, dec_enc_attns = [], []
for i in range(self.LayerNum):
embeddingDecoderOuput, dec_self_attn, dec_enc_attn = self.Layers[i](decoder_input=embeddingDecoderOuput, encoder_output=encoder_output, mask=mask, mask_mask=mask_mask)
dec_self_attns.append(dec_self_attn)
dec_enc_attns.append(dec_enc_attn)
return embeddingDecoderOuput,dec_self_attns,dec_enc_attns
class Transformer(nn.Module):
def __init__(self,n_head,d_k,d_q,d_v,d_model,d_ff,kernel_size,vocal_size,LayerNum=6,src_len=5) -> None:
super(Transformer,self).__init__()
self.LayerNum=Layer_Num
self.n_head=n_head
self.d_k=d_k
self.d_q=d_q
self.d_v=d_v
self.d_model=d_model
self.d_ff=d_ff
self.kernel_size=kernel_size
self.encoder=Encoder(n_head=n_heads,d_k=d_k,d_q=d_q,d_v=d_v,d_model=d_model,d_ff=d_ff,kernel_size=1,vocal_size=src_vocab_size,LayerNum=Layer_Num)
self.decoder=Decoder(n_head=n_heads,d_k=d_k,d_q=d_q,d_v=d_v,d_model=d_model,d_ff=d_ff,kernel_size=1,vocal_size=src_vocab_size,LayerNum=Layer_Num)
self.project=nn.Linear(in_features=d_model,out_features=tgt_vocab_size)
def forward(self,encoder_input,decoder_input):
encoder_output,EncoderAttention=self.encoder(encoder_input)
decoder_output,DeSelfAttention,DeEncAttention=self.decoder(decoder_input=decoder_input,encoder_output=encoder_output)
result=self.project(decoder_output)
return result.view(-1, result.size(-1)), EncoderAttention,DeSelfAttention,DeEncAttention
if __name__=='__main__':
sentences = ['ich mochte ein bier P', 'S i want a beer', 'i want a beer E']
# Transformer Parameters
# Padding Should be Zero
src_vocab = {'P': 0, 'ich': 1, 'mochte': 2, 'ein': 3, 'bier': 4}
src_vocab_size = len(src_vocab)
tgt_vocab = {'P': 0, 'i': 1, 'want': 2, 'a': 3, 'beer': 4, 'S': 5, 'E': 6}
number_dict = {i: w for i, w in enumerate(tgt_vocab)}
tgt_vocab_size = len(tgt_vocab)
batch=1#后面要改
src_len = 5 # length of source
tgt_len = 5 # length of target
d_model = 512 # Embedding Size
Layer_Num=6
n_heads = 8
d_k = d_v = 64
d_ff = 2048 # FeedForward dimension
d_q=d_k
kernel_size=1
model=Transformer(n_head=n_heads,d_k=d_k,d_q=d_q,d_v=d_v,d_model=d_model,d_ff=d_ff,kernel_size=1,vocal_size=src_vocab_size,LayerNum=Layer_Num)
#x=torch.normal(0, 1, (batch, src_len))
criterion = nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=0.01)
enc_inputs, dec_inputs, target_batch = utils.make_batch(src_vocab=src_vocab,tgt_vocab=tgt_vocab,sentences=sentences)
for epoch in range(2000):
optimizer.zero_grad()
output,_,_,_=model(encoder_input=enc_inputs,decoder_input=dec_inputs)
loss=criterion(output,target_batch.contiguous().view(-1))
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
loss.backward()
optimizer.step()