-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
352 lines (304 loc) · 15.7 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#!/usr/bin/python3
# coding=gbk
"""
@author: yuchuang
@time:
@desc:
"""
import sys
import time
import keras
from sklearn import metrics
from scipy import interpolate
from keras.models import *
from keras.layers import *
from utils.utils import *
from loss.loss import *
from keras.utils import to_categorical
#######################################################
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
learning_rate = 2e-4
pretrained_weights = False
batch_size = 64 # default:64
epochs = 40 # default:40
# 'VIS-NIR': VIS-NIR patch dataset, 'OS': OS patch dataset, 'SEN1-2': SEN1-2 patch datset
choose_dataset = 'VIS-NIR' # 'VIS-NIR', 'OS', 'SEN1-2'
# 'SCFDM':SCFDM, 'AFD':AFD-Net, 'MFD': MFD-Net, 'EFR':EFR-Net, 'FIL':FIL-Net, 'RRL':RRL-Net.
choose_model = 'RRL' # choose one in ['SCFDM', 'AFD', 'MFD', 'EFR', 'FIL', 'RRL'].
input_model = access_model(choose_model)
out_dir_name = choose_model + '__' + choose_dataset
########################################################
class Logger(object):
def __init__(self, fileN="Default.log"):
self.terminal = sys.stdout
self.log = open(fileN, "a", encoding='utf-8')
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
root_path = os.path.abspath('.')
data_path = os.path.join(root_path, 'data')
time1 = time.strftime('%Y%m%d%H%M', time.localtime(time.time()))
log_path, history_path, testout_path, fig_path, model_path = make_filedir(root_path, out_dir_name, time1)
best_model_path = os.path.join(model_path, 'match_model_best.hdf5')
best_model_test_path = os.path.join(model_path, 'match_model_best_test.hdf5')
new_name = "log" + time1 + ".txt"
sys.stdout = Logger(os.path.join(log_path, new_name))
if choose_model == 'SCFDM':
matchnet = input_model()
matchnet.compile(loss=['categorical_crossentropy', 'binary_crossentropy'],
optimizer=keras.optimizers.Nadam(lr=learning_rate),
metrics=['accuracy'])
elif choose_model == 'AFD':
matchnet = input_model()
matchnet.compile(loss='categorical_crossentropy',
optimizer=keras.optimizers.Nadam(lr=learning_rate),
metrics=['accuracy'])
elif choose_model == 'MFD' or choose_model == 'EFR':
matchnet = input_model()
matchnet.compile(loss='binary_crossentropy',
optimizer=keras.optimizers.Adam(lr=learning_rate),
metrics=['accuracy'])
elif choose_model == 'FIL':
matchnet = input_model()
matchnet.compile(loss='binary_crossentropy',
optimizer=keras.optimizers.Nadam(lr=learning_rate),
metrics=['accuracy'])
elif choose_model == 'RRL':
matchnet, matchnet_test = input_model()
matchnet.compile(loss=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy',
'binary_crossentropy', 'binary_crossentropy', p_mse_loss_01, p_mse_loss_01],
loss_weights=[1, 1, 1, 1, 1, 1, 1, 1],
optimizer=keras.optimizers.Nadam(lr=learning_rate),
metrics=['accuracy'])
matchnet_test.compile(loss=['binary_crossentropy'],
loss_weights=[1],
optimizer=keras.optimizers.Nadam(lr=learning_rate),
metrics=['accuracy'])
else:
print("Error!!!! Please input right model name!!!")
sys.exit(0)
print("加载数据中........................................")
if choose_dataset == 'VIS-NIR':
img = np.load(os.path.join(data_path, 'vis-nir',"country.npy"))
label = np.load(os.path.join(data_path, 'vis-nir', "country_label.npy"))
val_img = np.load(os.path.join(data_path, 'vis-nir', "val_data.npy"))
val_label = np.load(os.path.join(data_path, 'vis-nir', "val_label.npy"))
elif choose_dataset == 'OS':
img = np.load(os.path.join(data_path, 'os', "os_train_image.npy"))
label = np.load(os.path.join(data_path, 'os', "os_train_label.npy"))
val_img = np.load(os.path.join(data_path, 'os', "os_test_image.npy"))
val_label = np.load(os.path.join(data_path, 'os', "os_test_label.npy"))
elif choose_dataset == 'SEN1-2':
img = np.load(os.path.join(data_path, 'sen1-2', "sne_train_image.npy"))
label = np.load(os.path.join(data_path, 'sen1-2', "sne_train_label.npy"))
val_img = np.load(os.path.join(data_path, 'sen1-2', "sne_test_image.npy"))
val_label = np.load(os.path.join(data_path, 'sen1-2', "sne_test_label.npy"))
else:
print("Error!!!! Please input right dataset name!!!")
sys.exit(0)
print("训练集图像集大小:", img.shape)
print("训练集标签集大小:", label.shape)
print("验证集图像集大小:", val_img.shape)
print("验证集标签集大小:", val_label.shape)
np.random.seed(100)
np.random.shuffle(img)
np.random.seed(100)
np.random.shuffle(label)
img0 = np.expand_dims(img[:, 0], axis=3)
img1 = np.expand_dims(img[:, 1], axis=3)
val_img0 = np.expand_dims(val_img[:, 0], axis=3)
val_img1 = np.expand_dims(val_img[:, 1], axis=3)
train_loss_mean_list = np.zeros(epochs)
train_acc_mean_list = np.zeros(epochs)
val_fpr95_list = np.zeros(epochs)
val_loss_list = np.zeros(epochs)
val_acc_list = np.zeros(epochs)
best_fpr95 = 100
best_i = 0
for i in range(0, epochs):
epoch_model_name = "match_model" + str(i + 1) + ".hdf5"
model_file_path = os.path.join(model_path, epoch_model_name)
print("Epoch is {}/{}".format(i + 1, epochs))
iters = int(len(label) / batch_size)
train_loss_list = np.zeros(iters)
train_acc_list = np.zeros(iters)
for j in range(iters):
rgb_aug, nir_aug, label_batch = gen4(img0, img1, label, batch_size)
rgb_aug = rgb_aug / 255.0
nir_aug = nir_aug / 255.0
if choose_model == 'SCFDM':
label_batch_multiclass = to_categorical(label_batch, num_classes=2)
train_loss = matchnet.train_on_batch([rgb_aug, nir_aug],
[label_batch_multiclass, label_batch])
train_loss_list[j] = train_loss[0]
train_acc_list[j] = train_loss[3]
print(" Epoch:{}/{},迭代次数:{}/{},训练loss:{:.4f},训练acc:{:.4f}".format(i + 1, epochs, j, iters, train_loss[0],
train_loss[3]))
elif choose_model == 'AFD':
label_batch_multiclass = to_categorical(label_batch, num_classes=2)
train_loss = matchnet.train_on_batch([rgb_aug, nir_aug],
[label_batch_multiclass, label_batch_multiclass])
train_loss_list[j] = train_loss[0] # 保存loss
train_acc_list[j] = train_loss[3] # 保存acc
print(" Epoch:{}/{},迭代次数:{}/{},训练loss:{:.4f},训练acc:{:.4f}".format(i + 1, epochs, j, iters, train_loss[0],
train_loss[3]))
elif choose_model == 'MFD':
train_loss = matchnet.train_on_batch(
[rgb_aug, nir_aug, rgb_aug, nir_aug, rgb_aug, nir_aug, rgb_aug, nir_aug],
[label_batch, label_batch, label_batch, label_batch, label_batch])
train_loss_list[j] = train_loss[0]
train_acc_list[j] = train_loss[6]
print(" Epoch:{}/{},迭代次数:{}/{},训练loss:{:.4f},训练acc:{:.4f}".format(i + 1, epochs, j, iters, train_loss[0],
train_loss[6]))
elif choose_model == 'EFR':
train_loss = matchnet.train_on_batch([rgb_aug, nir_aug, rgb_aug, nir_aug],
[label_batch, label_batch, label_batch])
train_loss_list[j] = train_loss[0]
train_acc_list[j] = train_loss[4]
print(" Epoch:{}/{},迭代次数:{}/{},训练loss:{:.4f},训练acc:{:.4f}".format(i + 1, epochs, j, iters, train_loss[0],
train_loss[4]))
elif choose_model == 'FIL':
train_loss = matchnet.train_on_batch([rgb_aug, nir_aug],
[label_batch, label_batch, label_batch, label_batch, label_batch,
label_batch])
train_loss_list[j] = train_loss[0]
train_acc_list[j] = train_loss[7]
print(" Epoch:{}/{},迭代次数:{}/{},训练loss:{:.4f},训练acc:{:.4f}".format(i + 1, epochs, j, iters, train_loss[0],
train_loss[7]))
elif choose_model == 'RRL':
train_loss = matchnet.train_on_batch([rgb_aug, nir_aug],
[label_batch, label_batch, label_batch, label_batch, label_batch,
label_batch, rgb_aug, nir_aug])
train_loss_list[j] = train_loss[0]
train_acc_list[j] = train_loss[9]
print(
" Epoch:{}/{},迭代次数:{}/{},训练总loss:{:.4f},训练acc:{:.4f}" .format(i + 1, epochs, j, iters, train_loss[0], train_loss[9]))
else:
print("Error!!!! Please input right model name!!!")
sys.exit(0)
train_loss_mean_list[i] = np.mean(train_loss_list)
train_acc_mean_list[i] = np.mean(train_acc_list)
img_val_0 = val_img0 / 255.0
img_val_1 = val_img1 / 255.0
if choose_model == 'SCFDM':
val_label_multiclass = to_categorical(val_label, num_classes=2)
loss = matchnet.evaluate([img_val_0, img_val_1], [val_label_multiclass, val_label], verbose=1)
val_loss_list[i] = loss[0]
val_acc_list[i] = loss[3]
elif choose_model == 'AFD':
val_label_multiclass = to_categorical(val_label, num_classes=2)
loss = matchnet.evaluate([img_val_0, img_val_1], [val_label_multiclass, val_label_multiclass], verbose=1)
val_loss_list[i] = loss[0]
val_acc_list[i] = loss[3]
elif choose_model == 'MFD':
loss = matchnet.evaluate(
[img_val_0, img_val_1, img_val_0, img_val_1, img_val_0, img_val_1, img_val_0, img_val_1],
[val_label, val_label, val_label, val_label, val_label], verbose=1)
val_loss_list[i] = loss[0]
val_acc_list[i] = loss[6]
elif choose_model == 'EFR':
loss = matchnet.evaluate(
[img_val_0, img_val_1, img_val_0, img_val_1], [val_label, val_label, val_label], verbose=1)
val_loss_list[i] = loss[0]
val_acc_list[i] = loss[4]
elif choose_model == 'FIL':
loss = matchnet.evaluate([img_val_0, img_val_1],
[val_label, val_label, val_label, val_label, val_label, val_label], verbose=1)
val_loss_list[i] = loss[0]
val_acc_list[i] = loss[7]
elif choose_model == 'RRL':
loss = matchnet.evaluate([img_val_0, img_val_1],
[val_label, val_label, val_label, val_label, val_label, val_label, img_val_0, img_val_1],
verbose=1)
val_loss_list[i] = loss[0]
val_acc_list[i] = loss[9]
else:
print("Error!!!! Please input right model name!!!")
sys.exit(0)
if choose_dataset == 'VIS-NIR':
fpr_list = []
for j in range(8):
print("正在处理的类别为:", j)
val0 = img_val_0[j * 10000:((j + 1) * 10000)]
val1 = img_val_1[j * 10000:((j + 1) * 10000)]
label_input = val_label[j * 10000:((j + 1) * 10000)]
if choose_model == 'SCFDM' or choose_model == 'AFD':
label_out_linshi = matchnet.predict([val0, val1], batch_size=64)
label_out_linshi = label_out_linshi[0]
label_out = label_out_linshi[:, 1]
elif choose_model == 'MFD':
label_out = matchnet.predict([val0, val1,val0, val1,val0, val1,val0, val1], batch_size=64)
label_out = label_out[0]
elif choose_model == 'EFR':
label_out = matchnet.predict([val0, val1, val0, val1], batch_size=64)
label_out = label_out[0]
elif choose_model == 'FIL':
label_out = matchnet.predict([val0, val1], batch_size=64)
label_out = label_out[0]
elif choose_model == 'RRL':
label_out = matchnet_test.predict([val0, val1], batch_size=64)
# label_out = label_out[0]'
else:
print("Error!!!! Please input right model name!!!")
sys.exit(0)
val_fpr, val_tpr, val_thresholds = metrics.roc_curve(label_input, label_out)
val_fpr95 = float(interpolate.interp1d(val_tpr, val_fpr)(0.95))
fpr_list.append(val_fpr95)
val_fpr95_out = np.mean(fpr_list)
val_fpr95_list[i] = val_fpr95_out
else:
if choose_model == 'SCFDM' or choose_model == 'AFD':
label_out_linshi = matchnet.predict([img_val_0, img_val_1], batch_size=64)
label_out_linshi = label_out_linshi[0]
label_out = label_out_linshi[:, 1]
elif choose_model == 'MFD':
label_out = matchnet.predict([img_val_0, img_val_1, img_val_0, img_val_1, img_val_0, img_val_1, img_val_0, img_val_1], batch_size=64)
label_out = label_out[0]
elif choose_model == 'EFR':
label_out = matchnet.predict([img_val_0, img_val_1, img_val_0, img_val_1], batch_size=64)
label_out = label_out[0]
elif choose_model == 'FIL':
label_out = matchnet.predict([img_val_0, img_val_1], batch_size=64)
label_out = label_out[0]
elif choose_model == 'RRL':
label_out = matchnet_test.predict([img_val_0, img_val_1], batch_size=64)
# label_out = label_out[0]'
else:
print("Error!!!! Please input right model name!!!")
sys.exit(0)
val_fpr, val_tpr, val_thresholds = metrics.roc_curve(val_label, label_out)
val_fpr95_out = float(interpolate.interp1d(val_tpr, val_fpr)(0.95))
val_fpr95_list[i] = val_fpr95_out
if val_fpr95_out <= best_fpr95:
best_fpr95 = val_fpr95_out
best_i = i + 1
if choose_model == 'RRL':
matchnet.save(best_model_path)
matchnet_test.save(best_model_test_path)
else:
matchnet.save(best_model_path)
print("Epoch:{},该epoch下训练的loss_mean:{:.4f},训练acc_mean:{:.4f},测试集fpr95:{:.4f},最好i:{},最好fpr95:{:.4f}".format(i + 1,
np.mean(
train_loss_list),
np.mean(
train_acc_list),
val_fpr95_out,
best_i,
best_fpr95))
print("\n")
# matchnet.save(model_file_path)
print("各轮epoch下验证集的准确率:", val_fpr95_list)
with open(history_path, 'w') as f:
f.write("各轮epoch下训练集的loss:" + str(train_loss_mean_list))
f.write("\n")
f.write("各轮epoch下训练集的acc:" + str(train_acc_mean_list))
f.write("\n")
f.write("各轮epoch下测试集的loss:" + str(val_loss_list))
f.write("\n")
f.write("各轮epoch下测试集的acc:" + str(val_acc_list))
f.write("\n")
f.write("各轮epoch下验证集的fpr95:" + str(val_fpr95_list))
f.write("\n")
f.close()