Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

作为医学图像分割结果可信度高吗 #1

Open
KevinYang95 opened this issue Jul 5, 2019 · 3 comments
Open

作为医学图像分割结果可信度高吗 #1

KevinYang95 opened this issue Jul 5, 2019 · 3 comments

Comments

@KevinYang95
Copy link

KevinYang95 commented Jul 5, 2019

感谢你的分享,从知乎过来的。对您分享的这个很感兴趣,请问把这个作为数据量很少的医学图像的分割是否具有操作性,或者说这个结构改为同样是全卷积网络的UNet,想跟您好好请教。医学图像是灰度的,颜色信息可能不起作用。

@Eurus-Holmes
Copy link

@ykeivn Have you ever tried? It seems not good if directly convert gray to RGB...

@Yonv1943
Copy link
Owner

Yonv1943 commented Sep 7, 2019

抱歉,我没有医学图像的数据,所以没有机会尝试这个方法在医学图像上的表现。
Sorry, I don't have any medical images for testing. So I have no chance to try this method on medical image in grayscale.

你想问的问题应该是【这个方法在三通道的RGB图像上可用,那么在单通道的灰度图上是否可用?】
我自己试了一下它在灰度图上的表现:远没有到达RGB图像的分割效果
I think your question is that 【This method work on 3-channel RGB image . How about grayscale image? 】
I try it on grayscale image: Far away from the GRB. Not good.

@OrdinaryChen
Copy link

灰度图像超像素结果聚类一定不会好,其次医学希望分割的是病理而不是各个区块,任务上出入比较大

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants