-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
83 lines (65 loc) · 2.16 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import argparse
import cv2
from td import add_vit_config
import torch
from detectron2.config import get_cfg
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultPredictor
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
def main():
parser = argparse.ArgumentParser(description="Detectron2 inference script")
parser.add_argument(
"--image_path",
help="Path to input image",
type=str,
required=True,
)
parser.add_argument(
"--output_file_name",
help="Name of the output visualization file.",
type=str,
)
parser.add_argument(
"--config-file",
default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=[],
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
# Step 1: instantiate config
cfg = get_cfg()
add_vit_config(cfg)
cfg.merge_from_file(args.config_file)
# Step 2: add model weights URL to config
cfg.merge_from_list(args.opts)
# Step 3: set device
device = "cuda" if torch.cuda.is_available() else "cpu"
cfg.MODEL.DEVICE = device
# Step 4: define model
predictor = DefaultPredictor(cfg)
# Step 5: run inference
img = cv2.imread(args.image_path)
md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
if cfg.DATASETS.TEST[0]=='icdar2019_test':
md.set(thing_classes=["table"])
else:
md.set(thing_classes=["text","title","list","table","figure"])
output = predictor(img)["instances"]
v = Visualizer(img[:, :, ::-1],
md,
scale=1.0,
instance_mode=ColorMode.SEGMENTATION)
result = v.draw_instance_predictions(output.to("cpu"))
result_image = result.get_image()[:, :, ::-1]
# step 6: save
cv2.imwrite(args.output_file_name, result_image)
if __name__ == '__main__':
main()