-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdr_vegapunk.py
170 lines (135 loc) · 5.04 KB
/
dr_vegapunk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import discord
import openai
import os
import quotes
import random
import logging
from dotenv import load_dotenv
from langchain.llms import OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
from langchain.tools import Tool
from langchain.utilities import GoogleSearchAPIWrapper
from decimal import Decimal,getcontext
# from substrateinterface import SubstrateInterface
load_dotenv()
#
# rpc_point = SubstrateInterface(url="wss://rpc-parachain.baju.network")
key = os.getenv('DR_VEGAPUNK_API_KEY')
openai.api_key = os.getenv('OPENAI_API_KEY')
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID')
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
# on reunisalise tout les module
intents = discord.Intents.default()
intents.message_content = True
bot = discord.Client(intents=intents)
search = GoogleSearchAPIWrapper()
lili = OpenAI(temperature=0.9)
tool = load_tools(["arxiv"])
tools = [Tool.from_function(
func=search.run,
name="Search",
description="usefu for answer about current events"
),
]
agent_chain = initialize_agent(tools,
lili,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True)
async def demande_balance(adresse):
# rpc_point = SubstrateInterface(url="wss://rpc-parachain.baju.network")
getcontext().prec = 15
result = rpc_point.query('System','Account',[adresse])
balance = Decimal(result.value['data']['free']) / Decimal(10**12)
balance_format = format(balance,'.2f')
return f'la Balance est de compte est de : {balance_format} Bajun '
async def demande_longchain(prompt) :
agent_chain.run(prompt)
# on va configure l'Api de OpenAi enfin d'avoir acce au Model de ChatGPT et aussi a Dall-e
# Model ChatGPT3.5
async def demande_gpt(prompt) :
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role" : "system", "content" : "Je suis le Dr Vegapunk"},
{"role" : "user", "content" : prompt}
],
max_tokens=500,
temperature=0.75,
top_p=1.0,
# stop =4,
frequency_penalty=0.0,
presence_penalty=0.6
)
message = response.choices[0].message.content.strip()
return message
# Model Dalle
async def demande_image(prompt) :
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
image_url = response['data'][0]['url']
return image_url
@bot.event
async def on_ready() :
print(f'We have logged in #momo-jam-cava as : {bot.user} , SUPER!!!!!!!!!!!!!!!!! dev by Y_mC ')
@bot.event
async def on_message(message) :
if message.author == bot.user :
return
if message.content.startswith('roll 10') :
roll = [random.randint(1, 100) for i in range(10)]
await message.channel.send(f'{roll}')
if message.content.startswith('quote') :
quote = random.choice(quotes.Afro_quote_1)
await message.channel.send(f'{quote}')
dr_vegapunk_channel: discord.TextChannel = bot.get_channel(1099103151572926477)
if message.content.startswith("!") :
prompt = message.content[11 :]
response = await demande_gpt(prompt)
await dr_vegapunk_channel.send(content=response)
if message.content.startswith("!img") :
prompt = message.content[11 :]
response = await demande_image(prompt)
await dr_vegapunk_channel.send(content=response)
if message.content.startswith("!archiv") :
prompt = message.content[11 :]
response = await demande_longchain(prompt)
await dr_vegapunk_channel.send(content=response)
if message.content.startswith('!baj'):
adresse = message.content[11 :]
response = await demande_balance(adresse)
await dr_vegapunk_channel.send(content=response)
bot.run(key, log_level=logging.DEBUG)
# generator = pipeline('text-generation', model='gpt2-xl')
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2-xl')
# tokenizer.pad_token = tokenizer.eos_token
# dr_vegapunk = GPT2LMHeadModel.from_pretrained('gpt2-xl')
#
#
# def generate_response(prompt, model, tokenizer, max_length=50) :
# inputs = tokenizer(prompt,
# return_tensors="pt",
# padding=True,
# truncation=True,
# max_length=max_length)
# input_ids = inputs["input_ids"]
# attention_mask = inputs["attention_mask"]
# output = model.generate(input_ids,
# max_length=max_length,
# num_return_sequences=1,
# no_repeat_ngram_size=2,
# do_sample=True,
# temperature=0.1,
# attention_mask=attention_mask,
# pad_token_id=tokenizer.eos_token_id)
# response = tokenizer.decode(output[0], skip_special_tokens=True)
# print(response)
#
# # return response
#
#
# while True :
# prompt = input(f'YMC: ')
# generate_response(prompt, dr_vegapunk, tokenizer)