-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathsimi_comp.py
67 lines (53 loc) · 2.29 KB
/
simi_comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from scipy.io import loadmat
import numpy as np
import scipy.sparse as sp
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1)) + 0.01
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
# load data
data_name = 'YelpChi.mat' # 'Amazon.mat' or 'YelpChi.mat'
mode = 'pos' # if set to pos, it only compute two metrics for positive nodes
data = loadmat(data_name)
if data_name == 'YelpChi.mat':
net_list = [data['net_rur'].nonzero(), data['net_rtr'].nonzero(),
data['net_rsr'].nonzero(), data['homo'].nonzero()]
else: # amazon dataset
net_list = [data['net_upu'].nonzero(), data['net_usu'].nonzero(),
data['net_uvu'].nonzero(), data['homo'].nonzero()]
feature = normalize(data['features']).toarray()
label = data['label'][0]
# extract the edges of positive nodes in each relation graph
pos_nodes = set(label.nonzero()[0].tolist())
node_list = [set(net[0].tolist()) for net in net_list]
pos_node_list = [list(net_nodes.intersection(pos_nodes)) for net_nodes in node_list]
pos_idx_list = []
for net, pos_node in zip(net_list, pos_node_list):
pos_idx_list.append(np.in1d(net[0], np.array(pos_node)).nonzero()[0])
feature_simi_list = []
label_simi_list = []
print('compute two metrics')
for net, pos_idx in zip(net_list, pos_idx_list):
feature_simi = 0
label_simi = 0
if mode == 'pos': # compute two metrics for positive nodes
for idx in pos_idx:
u, v = net[0][idx], net[1][idx]
feature_simi += np.exp(-1 * np.square(np.linalg.norm(feature[u] - feature[v])))
label_simi += label[u] == label[v]
feature_simi = feature_simi / pos_idx.size
label_simi = label_simi / pos_idx.size
else: # compute two metrics for all nodes
for u, v in zip(net[0].tolist(), net[1].tolist()):
feature_simi += np.exp(-1 * np.square(np.linalg.norm(feature[u] - feature[v])))
label_simi += label[u] == label[v]
feature_simi = feature_simi / net[0].size
label_simi = label_simi / net[0].size
feature_simi_list.append(feature_simi)
label_simi_list.append(label_simi)
print(f'feature_simi: {feature_simi_list}')
print(f'label_simi: {label_simi_list}')