-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathmodel.py
52 lines (43 loc) · 1.67 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
from torch.nn import init
"""
CARE-GNN Models
Paper: Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters
Source: https://github.com/YingtongDou/CARE-GNN
"""
class OneLayerCARE(nn.Module):
"""
The CARE-GNN model in one layer
"""
def __init__(self, num_classes, inter1, lambda_1):
"""
Initialize the CARE-GNN model
:param num_classes: number of classes (2 in our paper)
:param inter1: the inter-relation aggregator that output the final embedding
"""
super(OneLayerCARE, self).__init__()
self.inter1 = inter1
self.xent = nn.CrossEntropyLoss()
# the parameter to transform the final embedding
self.weight = nn.Parameter(torch.FloatTensor(inter1.embed_dim, num_classes))
init.xavier_uniform_(self.weight)
self.lambda_1 = lambda_1
def forward(self, nodes, labels, train_flag=True):
embeds1, label_scores = self.inter1(nodes, labels, train_flag)
scores = torch.mm(embeds1, self.weight)
return scores, label_scores
def to_prob(self, nodes, labels, train_flag=True):
gnn_scores, label_scores = self.forward(nodes, labels, train_flag)
gnn_prob = nn.functional.softmax(gnn_scores, dim=1)
label_prob = nn.functional.softmax(label_scores, dim=1)
return gnn_prob, label_prob
def loss(self, nodes, labels, train_flag=True):
gnn_scores, label_scores = self.forward(nodes, labels, train_flag)
# Simi loss, Eq. (4) in the paper
label_loss = self.xent(label_scores, labels.squeeze())
# GNN loss, Eq. (10) in the paper
gnn_loss = self.xent(gnn_scores, labels.squeeze())
# the loss function of CARE-GNN, Eq. (11) in the paper
final_loss = gnn_loss + self.lambda_1 * label_loss
return final_loss