-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrainer.py
executable file
·246 lines (201 loc) · 12.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
from torch import nn
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import GradScaler
from argparse import ArgumentParser
import os, json
current_dir = os.path.abspath(os.path.dirname(__file__))
from datasets import standardize_dataset_name
from models import get_model
from utils import setup, cleanup, init_seeds, get_logger, get_config, barrier
from utils import get_dataloader, get_loss_fn, get_optimizer, load_checkpoint, save_checkpoint
from utils import get_writer, update_train_result, update_eval_result, log
from train import train
from eval import evaluate
parser = ArgumentParser(description="Train an EBC model.")
# Parameters for model
parser.add_argument("--model", type=str, default="vgg19_ae", help="The model to train.")
parser.add_argument("--input_size", type=int, default=448, help="The size of the input image.")
parser.add_argument("--reduction", type=int, default=8, choices=[8, 16, 32], help="The reduction factor of the model.")
parser.add_argument("--regression", action="store_true", help="Use blockwise regression instead of classification.")
parser.add_argument("--truncation", type=int, default=None, help="The truncation of the count.")
parser.add_argument("--anchor_points", type=str, default="average", choices=["average", "middle"], help="The representative count values of bins.")
parser.add_argument("--prompt_type", type=str, default="word", choices=["word", "number"], help="The prompt type for CLIP.")
parser.add_argument("--granularity", type=str, default="fine", choices=["fine", "dynamic", "coarse"], help="The granularity of bins.")
parser.add_argument("--num_vpt", type=int, default=32, help="The number of visual prompt tokens.")
parser.add_argument("--vpt_drop", type=float, default=0.0, help="The dropout rate for visual prompt tokens.")
parser.add_argument("--shallow_vpt", action="store_true", help="Use shallow visual prompt tokens.")
# Parameters for dataset
parser.add_argument("--dataset", type=str, required=True, help="The dataset to train on.")
parser.add_argument("--batch_size", type=int, default=8, help="The training batch size.")
parser.add_argument("--num_crops", type=int, default=1, help="The number of crops for multi-crop training.")
parser.add_argument("--min_scale", type=float, default=1.0, help="The minimum scale for random scale augmentation.")
parser.add_argument("--max_scale", type=float, default=2.0, help="The maximum scale for random scale augmentation.")
parser.add_argument("--brightness", type=float, default=0.1, help="The brightness factor for random color jitter augmentation.")
parser.add_argument("--contrast", type=float, default=0.1, help="The contrast factor for random color jitter augmentation.")
parser.add_argument("--saturation", type=float, default=0.1, help="The saturation factor for random color jitter augmentation.")
parser.add_argument("--hue", type=float, default=0.0, help="The hue factor for random color jitter augmentation.")
parser.add_argument("--kernel_size", type=int, default=5, help="The kernel size for Gaussian blur augmentation.")
parser.add_argument("--saltiness", type=float, default=1e-3, help="The saltiness for pepper salt noise augmentation.")
parser.add_argument("--spiciness", type=float, default=1e-3, help="The spiciness for pepper salt noise augmentation.")
parser.add_argument("--jitter_prob", type=float, default=0.2, help="The probability for random color jitter augmentation.")
parser.add_argument("--blur_prob", type=float, default=0.2, help="The probability for Gaussian blur augmentation.")
parser.add_argument("--noise_prob", type=float, default=0.5, help="The probability for pepper salt noise augmentation.")
# Parameters for evaluation
parser.add_argument("--sliding_window", action="store_true", help="Use sliding window strategy for evaluation.")
parser.add_argument("--stride", type=int, default=None, help="The stride for sliding window strategy.")
parser.add_argument("--window_size", type=int, default=None, help="The window size for in prediction.")
parser.add_argument("--resize_to_multiple", action="store_true", help="Resize the image to the nearest multiple of the input size.")
parser.add_argument("--zero_pad_to_multiple", action="store_true", help="Zero pad the image to the nearest multiple of the input size.")
# Parameters for loss function
parser.add_argument("--weight_count_loss", type=float, default=1.0, help="The weight for count loss.")
parser.add_argument("--count_loss", type=str, default="mae", choices=["mae", "mse", "dmcount"], help="The loss function for count.")
# Parameters for optimizer (Adam)
parser.add_argument("--lr", type=float, default=1e-4, help="The learning rate.")
parser.add_argument("--weight_decay", type=float, default=1e-4, help="The weight decay.")
# Parameters for learning rate scheduler
parser.add_argument("--warmup_epochs", type=int, default=50, help="Number of epochs for warmup. The learning rate will increase from eta_min to lr.")
parser.add_argument("--warmup_lr", type=float, default=1e-6, help="Learning rate for warmup.")
parser.add_argument("--T_0", type=int, default=5, help="Number of epochs for the first restart.")
parser.add_argument("--T_mult", type=int, default=2, help="A factor increases T_0 after a restart.")
parser.add_argument("--eta_min", type=float, default=1e-7, help="Minimum learning rate.")
# Parameters for training
parser.add_argument("--total_epochs", type=int, default=2600, help="Number of epochs to train.")
parser.add_argument("--eval_start", type=int, default=50, help="Start to evaluate after this number of epochs.")
parser.add_argument("--eval_freq", type=int, default=1, help="Evaluate every this number of epochs.")
parser.add_argument("--save_freq", type=int, default=5, help="Save checkpoint every this number of epochs. Could help reduce I/O.")
parser.add_argument("--save_best_k", type=int, default=3, help="Save the best k checkpoints.")
parser.add_argument("--amp", action="store_true", help="Use automatic mixed precision training.")
parser.add_argument("--num_workers", type=int, default=4, help="Number of workers for data loading.")
parser.add_argument("--local_rank", type=int, default=-1, help="Local rank for distributed training.")
parser.add_argument("--seed", type=int, default=42, help="Random seed.")
def run(local_rank: int, nprocs: int, args: ArgumentParser) -> None:
print(f"Rank {local_rank} process among {nprocs} processes.")
init_seeds(args.seed + local_rank)
setup(local_rank, nprocs)
print(f"Initialized successfully. Training with {nprocs} GPUs.")
device = f"cuda:{local_rank}" if local_rank != -1 else "cuda:0"
print(f"Using device: {device}.")
ddp = nprocs > 1
if args.regression:
bins, anchor_points = None, None
else:
with open(os.path.join(current_dir, "configs", f"reduction_{args.reduction}.json"), "r") as f:
config = json.load(f)[str(args.truncation)][args.dataset]
bins = config["bins"][args.granularity]
anchor_points = config["anchor_points"][args.granularity]["average"] if args.anchor_points == "average" else config["anchor_points"][args.granularity]["middle"]
bins = [(float(b[0]), float(b[1])) for b in bins]
anchor_points = [float(p) for p in anchor_points]
args.bins = bins
args.anchor_points = anchor_points
model = get_model(
backbone=args.model,
input_size=args.input_size,
reduction=args.reduction,
bins=bins,
anchor_points=anchor_points,
prompt_type=args.prompt_type,
num_vpt=args.num_vpt,
vpt_drop=args.vpt_drop,
deep_vpt=not args.shallow_vpt
).to(device)
grad_scaler = GradScaler() if args.amp else None
loss_fn = get_loss_fn(args).to(device)
optimizer, scheduler = get_optimizer(args, model)
ckpt_dir_name = f"{args.model}_{args.prompt_type}_" if "clip" in args.model else f"{args.model}_"
ckpt_dir_name += f"{args.input_size}_{args.reduction}_{args.truncation}_{args.granularity}_"
ckpt_dir_name += f"{args.weight_count_loss}_{args.count_loss}"
args.ckpt_dir = os.path.join(current_dir, "checkpoints", args.dataset, ckpt_dir_name)
os.makedirs(args.ckpt_dir, exist_ok=True)
model, optimizer, scheduler, grad_scaler, start_epoch, loss_info, hist_val_scores, best_val_scores = load_checkpoint(args, model, optimizer, scheduler, grad_scaler)
if local_rank == 0:
model_without_ddp = model
writer = get_writer(args.ckpt_dir)
logger = get_logger(os.path.join(args.ckpt_dir, "train.log"))
logger.info(get_config(vars(args), mute=False))
val_loader = get_dataloader(args, split="val", ddp=False)
args.batch_size = int(args.batch_size / nprocs)
args.num_workers = int(args.num_workers / nprocs)
train_loader, sampler = get_dataloader(args, split="train", ddp=ddp)
model = DDP(nn.SyncBatchNorm.convert_sync_batchnorm(model), device_ids=[local_rank], output_device=local_rank) if ddp else model
for epoch in range(start_epoch, args.total_epochs + 1): # start from 1
if local_rank == 0:
message = f"\tlr: {optimizer.param_groups[0]['lr']:.3e}"
log(logger, epoch, args.total_epochs, message=message)
if sampler is not None:
sampler.set_epoch(epoch)
model, optimizer, grad_scaler, loss_info = train(model, train_loader, loss_fn, optimizer, grad_scaler, device, local_rank, nprocs)
scheduler.step()
barrier(ddp)
if local_rank == 0:
eval = (epoch >= args.eval_start) and ((epoch - args.eval_start) % args.eval_freq == 0)
update_train_result(epoch, loss_info, writer)
log(logger, None, None, loss_info=loss_info, message="\n" * 2 if not eval else None)
if eval:
print("Evaluating")
state_dict = model.module.state_dict() if ddp else model.state_dict()
model_without_ddp.load_state_dict(state_dict)
curr_val_scores = evaluate(
model_without_ddp,
val_loader,
device,
args.sliding_window,
args.input_size,
args.stride,
)
hist_val_scores, best_val_scores = update_eval_result(epoch, curr_val_scores, hist_val_scores, best_val_scores, writer, state_dict, os.path.join(args.ckpt_dir))
log(logger, None, None, None, curr_val_scores, best_val_scores, message="\n" * 3)
if (epoch % args.save_freq == 0):
save_checkpoint(
epoch + 1,
model.module.state_dict() if ddp else model.state_dict(),
optimizer.state_dict(),
scheduler.state_dict() if scheduler is not None else None,
grad_scaler.state_dict() if grad_scaler is not None else None,
loss_info,
hist_val_scores,
best_val_scores,
args.ckpt_dir,
)
barrier(ddp)
if local_rank == 0:
writer.close()
print("Training completed. Best scores:")
for k in best_val_scores.keys():
scores = " ".join([f"{best_val_scores[k][i]:.4f};" for i in range(len(best_val_scores[k]))])
print(f" {k}: {scores}")
cleanup(ddp)
def main():
args = parser.parse_args()
args.model = args.model.lower()
args.dataset = standardize_dataset_name(args.dataset)
if args.regression:
args.truncation = None
args.anchor_points = None
args.bins = None
args.prompt_type = None
args.granularity = None
if "clip_vit" not in args.model:
args.num_vpt = None
args.vpt_drop = None
args.shallow_vpt = None
if "clip" not in args.model:
args.prompt_type = None
if args.sliding_window:
args.window_size = args.input_size if args.window_size is None else args.window_size
args.stride = args.input_size if args.stride is None else args.stride
assert not (args.zero_pad_to_multiple and args.resize_to_multiple), "Cannot use both zero pad and resize to multiple."
else:
args.window_size = None
args.stride = None
args.zero_pad_to_multiple = False
args.resize_to_multiple = False
args.nprocs = torch.cuda.device_count()
print(f"Using {args.nprocs} GPUs.")
if args.nprocs > 1:
mp.spawn(run, nprocs=args.nprocs, args=(args.nprocs, args))
else:
run(0, 1, args)
if __name__ == "__main__":
main()