-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAACM_Final_Project.py
225 lines (177 loc) · 8.19 KB
/
AACM_Final_Project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 28 17:50:33 2018
@author: ous
store only two fitness -normal and special
graph = degree of only one sepecial node and one normal node
you don't need to store a snapshot of the graph at each timestep
"""
import matplotlib.pyplot as plt
from numpy import random
from collections import defaultdict
import json
class MyGraph:
def __init__(self, m, nc, maxNode, n_fraction, nNodeToGraph, sNodeToGraph):
self.noOfPriviledgeNodes=m
self.nc=nc
self.maxNode= maxNode
self.specialFitnessGrowthLimit=(n_fraction/100) * self.maxNode
self.normalDegreeForGraphing=nNodeToGraph
self.specialDegreeForGraphing=sNodeToGraph
self.specialNodeDegrees = defaultdict(dict)
self.normalNodeDegrees = defaultdict(dict)
self.specialNodeFitness = defaultdict(dict)
self.normalNodeFitness = defaultdict(dict)
self.timeStep=0
self.sumDegreeAndFitness=0
self.G=defaultdict(dict)
self.GFitness=defaultdict(dict)
#self.GFitness1=defaultdict(dict)
self.addInitialNormalNodes()
#Add inital 10 nodes and their fitnesses, including 4 special nodes
def addInitialNormalNodes(self):
for nn in range(1,11):
self.timeStep +=1
if nn == 1:
self.G[nn]=[nn+1,10]
elif nn==10:
self.G[nn]=[1, nn-1]
else:
self.G[nn]=[nn-1, nn+1]
#add special fitnesses
if self.timeStep <= self.specialFitnessGrowthLimit:
self.GFitness['special']=self.timeStep
if(nn>=self.specialDegreeForGraphing):
self.specialNodeFitness[self.timeStep] = self.getNodeFitness(self.specialDegreeForGraphing)
#add normal fitnesses
self.GFitness['normal']=self.nc
self.normalNodeFitness[self.timeStep] = self.getNodeFitness(self.normalDegreeForGraphing)
#check if a node is a special node
def isSpecialNode(self, node):
if node in [2,3,4,5]:
return True
else:
return False
#get degree of a node
def getNodeDegree(self, node):
return len(self.G[node])
#get fitness of a node
def getNodeFitness(self, node):
if self.isSpecialNode(node)==True:
return self.GFitness['special']
else:
return self.GFitness['normal']
#sum of derees * fitnesses
def sumDegreeFitness(self):
sumDF=0
for n in self.G:
sumDF +=(self.getNodeDegree(n)*self.getNodeFitness(n))
return sumDF
#node probability distribution formula
def getNodeProbList(self):
nProbList=list()
for node in self.G:
nProbList.append((self.getNodeDegree(node) * self.getNodeFitness(node)) / self.sumDegreeFitness())
return nProbList
#get random privilege nodes for attachment
def getPrivilegeNodes(self):
return random.choice(a=list(self.G.keys()),p=self.getNodeProbList(), replace=False, size=self.noOfPriviledgeNodes)
#store special node and normal node degrees at the specified time step
def storeDegreesAtTimeStep(self, atStep):
self.specialNodeDegrees[self.timeStep] = self.getNodeDegree(self.specialDegreeForGraphing)
self.normalNodeDegrees[self.timeStep] = self.getNodeDegree(self.normalDegreeForGraphing)
self.specialNodeFitness[self.timeStep] = self.getNodeFitness(self.specialDegreeForGraphing)
self.normalNodeFitness[self.timeStep] = self.getNodeFitness(self.normalDegreeForGraphing)
"""for n in self.G:
if self.isSpecialNode(n):
self.specialNodeDegrees[self.timeStep][n] = self.getNodeDegree(n)
else:
self.normalNodeDegrees[self.timeStep][n] = self.getNodeDegree(n)
"""
#new node
def newExtraNode(self, node):
self.timeStep +=1
privNodes = self.getPrivilegeNodes()
self.G[node] = privNodes.tolist()
for pNode in privNodes:
self.G[pNode].append([node])
#store special node degrees and normal node degrees at this step
self.storeDegreesAtTimeStep(self.timeStep)
#add special fitnesses
if self.timeStep <= self.specialFitnessGrowthLimit:
self.GFitness['special']=self.timeStep
#store fitnesses at this timestep
#special node fitnessed increase during the first stage (asumed to be n_fraction percent of the total nodes) of the growing network and then remain constant
"""for n in self.G:
if self.isSpecialNode(n)==True:
if self.timeStep > self.specialFitnessGrowthLimitTimestep:
#at this stage, the fiyness of n at timestanp self.specialFitnessGrowthLimitTimestep does not exist
if(self.specialFitnessGrowthLimitTimestep <= n):
self.GFitness[self.timeStep][n] = 0
else:
self.GFitness[self.timeStep][n] = self.GFitness[self.specialFitnessGrowthLimitTimestep][n]
else:
self.GFitness[self.timeStep][n] = self.timeStep
#if not special node
else:
self.GFitness[self.timeStep][n] = self.nc
self.sumDegreeAndFitness +=(self.getNodeDegree(n)*self.getNodeFitness(n))"""
#on two pdf files, draw graphs of normal nodes against their degrees and special nodes against their degrees
def drawGraph(self, gtype):
figure = plt.figure()
#normalFinalTimeStepKey=list(self.normalNodeDegrees.keys())[-1]
x0=list(self.normalNodeDegrees.keys())
y0=list(self.normalNodeDegrees.values())
plt.plot(x0, y0, label='normal node: '+str(self.normalDegreeForGraphing))
#specialFinalTimeStepKey=list(self.specialNodeDegrees.keys())[-1]
x1=list(self.specialNodeDegrees.keys())
y1=list(self.specialNodeDegrees.values())
plt.plot(x1, y1, label='special node: '+str(self.specialDegreeForGraphing))
plt.legend()
plt.xlabel('Time Step')
plt.ylabel('Degree')
if(gtype=='log'):
ttp='Log-Log'
elif(gtype=='linear'):
ttp='Linear'
plt.title('Normal and Special Nodes Time Step Against Degrees - '+ttp)
plt.xscale(gtype)
plt.yscale(gtype)
plt.show()
figure.savefig("m-"+str(self.noOfPriviledgeNodes)+"_"+"nc-"+str(self.nc)+"_max-"+str(self.maxNode)+"_"+ttp+"_output.pdf")
def drawFitnessGraph(self, gtype):
figure = plt.figure()
#normalFinalTimeStepKey=list(self.normalNodeDegrees.keys())[-1]
x0=list(self.normalNodeFitness.keys())
y0=list(self.normalNodeFitness.values())
plt.plot(x0, y0, label='normal node: '+str(self.normalDegreeForGraphing))
#specialFinalTimeStepKey=list(self.specialNodeDegrees.keys())[-1]
x1=list(self.specialNodeFitness.keys())
y1=list(self.specialNodeFitness.values())
plt.plot(x1, y1, label='special node: '+str(self.specialDegreeForGraphing))
plt.legend()
plt.xlabel('Time Step')
plt.ylabel('Fitness')
if(gtype=='log'):
ttp='Log-Log'
elif(gtype=='linear'):
ttp='Linear'
plt.title('Normal and Special Nodes Time Step Against Degrees - '+ttp)
plt.xscale(gtype)
plt.yscale(gtype)
plt.show()
figure.savefig("m-"+str(self.noOfPriviledgeNodes)+"_"+"nc-"+str(self.nc)+"_max-"+str(self.maxNode)+"_"+ttp+"_output.pdf")
# read input file
with open('input.json', 'r') as input_file:
data=input_file.read()
# parse file
input_obj = json.loads(data)
#create an object of class MyGraph
g=MyGraph(input_obj['m'],input_obj['nc'],input_obj['max_n'],input_obj['n_fraction'],input_obj['normal_node_to_graph'],input_obj['special_node_to_graph'])
for n in range(10, input_obj['max_n'], 1):
g.newExtraNode(n)
print(g.drawGraph('linear'))
print(g.drawGraph('log'))
print(g.drawFitnessGraph('linear'))
print(g.drawFitnessGraph('log'))