-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmesh_utils.cc
408 lines (373 loc) · 15.2 KB
/
mesh_utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
// Copyright 2019 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "draco/mesh/mesh_utils.h"
#ifdef DRACO_TRANSCODER_SUPPORTED
#include "draco/attributes/attribute_quantization_transform.h"
#include "draco/core/quantization_utils.h"
namespace draco {
void MeshUtils::TransformMesh(const Eigen::Matrix4d &transform, Mesh *mesh) {
// Transform positions.
PointAttribute *pos_att =
mesh->attribute(mesh->GetNamedAttributeId(GeometryAttribute::POSITION));
for (AttributeValueIndex avi(0); avi < pos_att->size(); ++avi) {
Vector3f pos_val;
pos_att->GetValue(avi, &pos_val[0]);
Eigen::Vector4d transformed_val(pos_val[0], pos_val[1], pos_val[2], 1);
transformed_val = transform * transformed_val;
pos_val =
Vector3f(transformed_val[0], transformed_val[1], transformed_val[2]);
pos_att->SetAttributeValue(avi, &pos_val[0]);
}
// Transform normals and tangents.
PointAttribute *normal_att = nullptr;
PointAttribute *tangent_att = nullptr;
if (mesh->NumNamedAttributes(GeometryAttribute::NORMAL) > 0) {
normal_att =
mesh->attribute(mesh->GetNamedAttributeId(GeometryAttribute::NORMAL));
}
if (mesh->NumNamedAttributes(GeometryAttribute::TANGENT) > 0) {
tangent_att =
mesh->attribute(mesh->GetNamedAttributeId(GeometryAttribute::TANGENT));
}
if (normal_att || tangent_att) {
// Use inverse-transpose matrix to transform normals and tangents.
Eigen::Matrix3d it_transform = transform.block<3, 3>(0, 0);
it_transform = it_transform.inverse().transpose();
if (normal_att) {
TransformNormalizedAttribute(it_transform, normal_att);
}
if (tangent_att) {
TransformNormalizedAttribute(it_transform, tangent_att);
}
}
}
namespace {
// Merges entries from |src_metadata| to |dst_metadata|. Any metadata entries
// with the same names are left unchanged.
void MergeMetadataInternal(const Metadata &src_metadata,
Metadata *dst_metadata) {
const auto &src_entries = src_metadata.entries();
const auto &dst_entries = dst_metadata->entries();
for (const auto &it : src_entries) {
if (dst_entries.find(it.first) != dst_entries.end()) {
// Source entry already exists in the target metadata.
continue;
}
// Copy over the entry (entries don't store the data type so binary copy
// is ok).
dst_metadata->AddEntryBinary(it.first, it.second.data());
}
// Merge any sub-metadata.
const auto &src_sub_metadata = src_metadata.sub_metadatas();
const auto &dst_sub_metadata = dst_metadata->sub_metadatas();
for (const auto &it : src_sub_metadata) {
if (dst_sub_metadata.find(it.first) == dst_sub_metadata.end()) {
// Source sub-metadata doesn't exists in the target metadata, copy it
// over.
std::unique_ptr<Metadata> sub_metadata(new Metadata(*it.second));
dst_metadata->AddSubMetadata(it.first, std::move(sub_metadata));
continue;
}
// Merge entries on the sub-metadata.
MergeMetadataInternal(*it.second, dst_metadata->sub_metadata(it.first));
}
}
} // namespace
void MeshUtils::MergeMetadata(const Mesh &src_mesh, Mesh *dst_mesh) {
const auto *src_metadata = src_mesh.GetMetadata();
if (src_metadata == nullptr) {
return; // Nothing to merge.
}
if (dst_mesh->GetMetadata() == nullptr) {
// Create new metadata for the |dst_mesh|. We do not copy the metadata
// directly because some of the underlying attribute metadata may need to
// be remapped to the format used by |dst_mesh| (e.g. unique ids of the
// attributes may have changed or some attributes may be missing on the
// |dst_mesh|).
std::unique_ptr<GeometryMetadata> new_metadata(new GeometryMetadata());
dst_mesh->AddMetadata(std::move(new_metadata));
}
auto *dst_metadata = dst_mesh->metadata();
// First go over all entries of the geometry part of |src_metadata|.
MergeMetadataInternal(*src_metadata, dst_metadata);
// Go over attribute metadata. Merges only metadata for attributes that exist
// both on the source and target meshes. Attribute unique ids are remapped
// if needed.
for (int att_type_i = 0;
att_type_i < GeometryAttribute::NAMED_ATTRIBUTES_COUNT; ++att_type_i) {
const GeometryAttribute::Type att_type =
static_cast<GeometryAttribute::Type>(att_type_i);
// TODO(ostava): Handle case when the number of attributes of a given type
// does not match.
if (src_mesh.NumNamedAttributes(att_type) !=
dst_mesh->NumNamedAttributes(att_type)) {
continue;
}
for (int j = 0; j < src_mesh.NumNamedAttributes(att_type); ++j) {
// First check if we have a metadata for this attribute.
const PointAttribute *const src_att =
src_mesh.GetNamedAttribute(att_type, j);
const auto *src_metadata =
src_mesh.GetMetadata()->GetAttributeMetadataByUniqueId(
src_att->unique_id());
if (src_metadata == nullptr) {
// No metadata at the source, ignore the attribute.
continue;
}
// Find target attribute corresponding to the source.
const PointAttribute *const dst_att =
dst_mesh->GetNamedAttribute(att_type, j);
if (dst_att == nullptr) {
// No corresponding attribute found, ignore the source metadata.
continue;
}
auto *dst_metadata =
dst_mesh->metadata()->attribute_metadata(dst_att->unique_id());
if (dst_metadata == nullptr) {
// Copy over the metadata (with remapped attribute unique id).
std::unique_ptr<AttributeMetadata> new_metadata(
new AttributeMetadata(*src_metadata));
new_metadata->set_att_unique_id(dst_att->unique_id());
dst_mesh->metadata()->AddAttributeMetadata(std::move(new_metadata));
continue;
}
// Merge metadata entries.
MergeMetadataInternal(*src_metadata, dst_metadata);
}
}
}
bool MeshUtils::FlipTextureUvValues(bool flip_u, bool flip_v,
PointAttribute *att) {
if (att->attribute_type() != GeometryAttribute::TEX_COORD) {
return false;
}
if (att->data_type() != DataType::DT_FLOAT32) {
return false;
}
if (att->num_components() != 2) {
return false;
}
std::array<float, 2> value;
for (AttributeValueIndex avi(0); avi < att->size(); ++avi) {
if (!att->GetValue<float, 2>(avi, &value)) {
return false;
}
if (flip_u) {
value[0] = 1.0 - value[0];
}
if (flip_v) {
value[1] = 1.0 - value[1];
}
att->SetAttributeValue(avi, value.data());
}
return true;
}
// TODO(fgalligan): Change att_id to be of type const PointAttribute &.
int MeshUtils::CountDegenerateFaces(const Mesh &mesh, int att_id) {
const PointAttribute *const att = mesh.attribute(att_id);
if (att == nullptr) {
return -1;
}
const int num_components = att->num_components();
switch (num_components) {
case 2:
return MeshUtils::CountDegenerateFaces<Vector2f>(mesh, *att);
case 3:
return MeshUtils::CountDegenerateFaces<Vector3f>(mesh, *att);
case 4:
return MeshUtils::CountDegenerateFaces<Vector4f>(mesh, *att);
default:
break;
}
return -1;
}
StatusOr<int> MeshUtils::FindLowestTextureQuantization(
const Mesh &mesh, const PointAttribute &pos_att, int pos_quantization_bits,
const PointAttribute &tex_att, int tex_target_quantization_bits) {
if (tex_target_quantization_bits < 0 || tex_target_quantization_bits >= 30) {
return Status(Status::DRACO_ERROR,
"Target texture quantization is out of range.");
}
// The target quantization is no quantization, so return 0.
if (tex_target_quantization_bits == 0) {
return 0;
}
const uint32_t pos_max_quantized_value = (1 << (pos_quantization_bits)) - 1;
AttributeQuantizationTransform pos_transform;
if (!pos_transform.ComputeParameters(pos_att, pos_quantization_bits)) {
return Status(Status::DRACO_ERROR,
"Failed computing position quantization parameters.");
}
// Get all degenerate faces for positions. If the model already has
// degenerate faces for positions, but valid faces for texture coordinates,
// those will not count as new degenerate faces for texture coordinates,
// because the faces would not have been rendered anyway.
const std::vector<FaceIndex> pos_degenerate_faces_sorted =
MeshUtils::ListDegenerateQuantizedFaces(
mesh, pos_att, pos_transform.range(), pos_max_quantized_value, false);
// Initialize return value to zero signifying that it could not find a
// quantization that did not cause any new degenerate faces.
int lowest_quantization_bits = 0;
int min_quantization_bits = tex_target_quantization_bits;
int max_quantization_bits = 29;
while (true) {
const int curr_quantization_bits =
min_quantization_bits +
(max_quantization_bits - min_quantization_bits) / 2;
AttributeQuantizationTransform transform;
if (!transform.ComputeParameters(tex_att, curr_quantization_bits)) {
return Status(Status::DRACO_ERROR,
"Failed computing texture quantization parameters.");
}
const uint32_t max_quantized_value = (1 << (curr_quantization_bits)) - 1;
// Get only new degenerate faces for texture coordinates. If the model
// already has degenerate faces for texture coordinates, we don't want to
// take into account those faces in the source, because those faces would
// not have been rendered correctly anyway.
const std::vector<FaceIndex> tex_degenerate_faces_sorted =
MeshUtils::ListDegenerateQuantizedFaces(
mesh, tex_att, transform.range(), max_quantized_value, true);
if (tex_degenerate_faces_sorted.size() <=
pos_degenerate_faces_sorted.size()) {
if (std::includes(pos_degenerate_faces_sorted.begin(),
pos_degenerate_faces_sorted.end(),
tex_degenerate_faces_sorted.begin(),
tex_degenerate_faces_sorted.end())) {
// Degenerate texture coordinate faces are a subset of position
// degenerate faces.
lowest_quantization_bits = curr_quantization_bits;
}
}
if (lowest_quantization_bits == curr_quantization_bits) {
// The lowest quantization is the current quantization, see if lower
// quantization is possible.
max_quantization_bits = curr_quantization_bits - 1;
} else {
min_quantization_bits = curr_quantization_bits + 1;
}
if (min_quantization_bits > max_quantization_bits) {
break;
}
}
return lowest_quantization_bits;
}
void MeshUtils::TransformNormalizedAttribute(const Eigen::Matrix3d &transform,
PointAttribute *att) {
for (AttributeValueIndex avi(0); avi < att->size(); ++avi) {
// Store up to 4 component values.
Vector4f val(0, 0, 0, 1);
att->GetValue(avi, &val);
// Ignore the last component during transformation.
Eigen::Vector3d transformed_val(val[0], val[1], val[2]);
transformed_val = transform * transformed_val;
transformed_val = transformed_val.normalized();
// Last component is passed to the transformed value.
val = Vector4f(transformed_val[0], transformed_val[1], transformed_val[2],
val[3]);
// Set the value to the attribute. Note that in case the attribute is using
// fewer than 4 components, the 4th component is going to be ignored.
att->SetAttributeValue(avi, &val[0]);
}
}
template <typename att_components_t>
int MeshUtils::CountDegenerateFaces(const Mesh &mesh,
const PointAttribute &att) {
if (att.data_type() != DataType::DT_FLOAT32) {
return -1;
}
std::array<att_components_t, 3> values;
int degenerate_values = 0;
for (FaceIndex fi(0); fi < mesh.num_faces(); ++fi) {
const auto &face = mesh.face(fi);
for (int c = 0; c < 3; ++c) {
att.GetMappedValue(face[c], &values[c][0]);
}
if (values[0] == values[1] || values[0] == values[2] ||
values[1] == values[2]) {
degenerate_values++;
}
}
return degenerate_values;
}
std::vector<FaceIndex> MeshUtils::ListDegenerateQuantizedFaces(
const Mesh &mesh, const PointAttribute &att, float range,
uint32_t max_quantized_value, bool quantized_degenerate_only) {
const int num_components = att.num_components();
switch (num_components) {
case 2:
return MeshUtils::ListDegenerateQuantizedFaces<Vector2f,
VectorD<int32_t, 2>>(
mesh, att, range, max_quantized_value, quantized_degenerate_only);
case 3:
return MeshUtils::ListDegenerateQuantizedFaces<Vector3f,
VectorD<int32_t, 3>>(
mesh, att, range, max_quantized_value, quantized_degenerate_only);
case 4:
return MeshUtils::ListDegenerateQuantizedFaces<Vector4f,
VectorD<int32_t, 4>>(
mesh, att, range, max_quantized_value, quantized_degenerate_only);
default:
break;
}
return std::vector<FaceIndex>();
}
template <typename att_components_t, typename quantized_components_t>
std::vector<FaceIndex> MeshUtils::ListDegenerateQuantizedFaces(
const Mesh &mesh, const PointAttribute &att, float range,
uint32_t max_quantized_value, bool quantized_degenerate_only) {
std::array<att_components_t, 3> values;
std::array<quantized_components_t, 3> quantized_values;
Quantizer quantizer;
quantizer.Init(range, max_quantized_value);
std::vector<FaceIndex> degenerate_faces;
for (FaceIndex fi(0); fi < mesh.num_faces(); ++fi) {
const auto &face = mesh.face(fi);
for (int c = 0; c < 3; ++c) {
att.GetMappedValue(face[c], &values[c][0]);
for (int i = 0; i < att_components_t::dimension; ++i) {
quantized_values[c][i] = quantizer.QuantizeFloat(values[c][i]);
}
}
if (quantized_degenerate_only &&
(values[0] == values[1] || values[0] == values[2] ||
values[1] == values[2])) {
continue;
}
if (quantized_values[0] == quantized_values[1] ||
quantized_values[0] == quantized_values[2] ||
quantized_values[1] == quantized_values[2]) {
degenerate_faces.push_back(fi);
}
}
return degenerate_faces;
}
bool MeshUtils::HasAutoGeneratedTangents(const Mesh &mesh) {
const int tangent_att_id =
mesh.GetNamedAttributeId(draco::GeometryAttribute::TANGENT);
if (tangent_att_id == -1) {
return false;
}
const auto metadata = mesh.GetAttributeMetadataByAttributeId(tangent_att_id);
if (metadata) {
int is_auto_generated = 0;
if (metadata->GetEntryInt("auto_generated", &is_auto_generated) &&
is_auto_generated == 1) {
return true;
}
}
return false;
}
} // namespace draco
#endif // DRACO_TRANSCODER_SUPPORTED