-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
231 lines (173 loc) · 8.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import argparse
import os
from lib.solver import train_epoch, val_epoch, test_epoch
from lib.sampler import ChunkSampler
from src.v2v_model import V2VModel
from src.v2v_util import V2VVoxelization
from datasets.itop_person import ITOPDataset
#######################################################################################
# Note,
# Run in project root direcotry(ROOT_DIR) with:
# PYTHONPATH=./ python experiments/msra-subject3/main.py
#
# This script will train model on MSRA hand datasets, save checkpoints to ROOT_DIR/checkpoint,
# and save test results(test_res.txt) and fit results(fit_res.txt) to ROOT_DIR.
#
#######################################################################################
## Some helpers
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch Hand Keypoints Estimation Training')
#parser.add_argument('--resume', 'r', action='store_true', help='resume from checkpoint')
parser.add_argument('--resume', '-r', default=-1, type=int, help='resume after epoch')
args = parser.parse_args()
return args
#######################################################################################
## Configurations
print('Warning: disable cudnn for batchnorm first, or just use only cuda instead!')
# When we need to resume training, enable randomness to avoid seeing the determinstic
# (agumented) samples many times.
# np.random.seed(1)
# torch.manual_seed(1)
# torch.cuda.manual_seed(1)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
dtype = torch.float
#
args = parse_args()
resume_train = args.resume >= 0
resume_after_epoch = args.resume
save_checkpoint = True
checkpoint_per_epochs = 1
checkpoint_dir = './experiments/itop_experiment/checkpoint'
start_epoch = 0
epochs_num = 1
batch_size = 12
#######################################################################################
## Data, transform, dataset and loader
# Data
print('==> Preparing data ..')
data_dir = './datasets/depthmap'
center_dir = './datasets/center/ITOP_center'
db = 'side'
keypoints_num = 15
cubic_size = 2.0
# Transform
voxelization_train = V2VVoxelization(cubic_size=2.0, augmentation=True)
voxelization_val = V2VVoxelization(cubic_size=2.0, augmentation=False)
def transform_train(sample):
points, keypoints, refpoint = sample['points'], sample['joints'], sample['refpoint']
assert(keypoints.shape[0] == keypoints_num)
input, heatmap = voxelization_train({'points': points, 'keypoints': keypoints, 'refpoint': refpoint})
return (torch.from_numpy(input), torch.from_numpy(heatmap))
def transform_val(sample):
points, keypoints, refpoint = sample['points'], sample['joints'], sample['refpoint']
assert(keypoints.shape[0] == keypoints_num)
input, heatmap = voxelization_val({'points': points, 'keypoints': keypoints, 'refpoint': refpoint})
return (torch.from_numpy(input), torch.from_numpy(heatmap))
# Dataset and loader
train_set = ITOPDataset(root=data_dir, center_dir=center_dir, db=db, mode='train', transform=transform_train)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=4)
#train_num = 1
#train_loader = torch.utils.data.DataLoader(train_set, batch_size=1, shuffle=False, num_workers=6,sampler=ChunkSampler(train_num, 0))
# No separate validation dataset, just use test dataset instead
val_set = ITOPDataset(root=data_dir, center_dir=center_dir, db=db, mode='test', transform=transform_val)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=4)
#######################################################################################
## Model, criterion and optimizer
print('==> Constructing model ..')
net = V2VModel(input_channels=1, output_channels=keypoints_num)
## load weights
state_dicts = torch.load("./experiments/itop_experiment/checkpoint/epoch14.pth")
net.load_state_dict(state_dicts['model_state_dict'])
net = net.to(device, dtype)
if device == torch.device('cuda'):
torch.backends.cudnn.enabled = True
cudnn.benchmark = True
print('cudnn.enabled: ', torch.backends.cudnn.enabled)
criterion = nn.MSELoss()
# optimizer = optim.Adam(net.parameters())
optimizer = optim.RMSprop(net.parameters(), lr=2.5e-4)
#######################################################################################
## Resume
if resume_train:
# Load checkpoint
epoch = resume_after_epoch
checkpoint_file = os.path.join(checkpoint_dir, 'epoch'+str(epoch)+'.pth')
print('==> Resuming from checkpoint after epoch {} ..'.format(epoch))
assert os.path.isdir(checkpoint_dir), 'Error: no checkpoint directory found!'
assert os.path.isfile(checkpoint_file), 'Error: no checkpoint file of epoch {}'.format(epoch)
checkpoint = torch.load(os.path.join(checkpoint_dir, 'epoch'+str(epoch)+'.pth'))
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch'] + 1
#######################################################################################
# # Train and Validate
print('==> Training ..')
for epoch in range(start_epoch, start_epoch + epochs_num):
print('Epoch: {}'.format(epoch))
train_epoch(net, criterion, optimizer, train_loader, device=device, dtype=dtype)
val_epoch(net, criterion, val_loader, device=device, dtype=dtype)
if save_checkpoint and epoch % checkpoint_per_epochs == 0:
if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir)
checkpoint_file = os.path.join(checkpoint_dir, 'new_epoch'+str(epoch)+'.pth')
checkpoint = {
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch
}
torch.save(checkpoint, checkpoint_file)
#######################################################################################
## Test
print('==> Testing ..')
voxelize_input = voxelization_val.voxelize # test : no augmentation
evaluate_keypoints = voxelization_val.evaluate
def transform_test(sample):
points, refpoint = sample['points'], sample['refpoint']
input = voxelize_input(points, refpoint)
return torch.from_numpy(input), torch.from_numpy(refpoint.reshape((1, -1)))
def transform_output(heatmaps, refpoints):
keypoints = evaluate_keypoints(heatmaps, refpoints)
return keypoints
class BatchResultCollector():
def __init__(self, samples_num, transform_output):
self.samples_num = samples_num
self.transform_output = transform_output
self.keypoints = None
self.idx = 0
def __call__(self, data_batch):
inputs_batch, outputs_batch, extra_batch = data_batch
outputs_batch = outputs_batch.cpu().numpy()
refpoints_batch = extra_batch.cpu().numpy()
keypoints_batch = self.transform_output(outputs_batch, refpoints_batch)
if self.keypoints is None:
# Initialize keypoints until dimensions awailable now
self.keypoints = np.zeros((self.samples_num, *keypoints_batch.shape[1:]))
batch_size = keypoints_batch.shape[0]
self.keypoints[self.idx:self.idx+batch_size] = keypoints_batch
self.idx += batch_size
def get_result(self):
return self.keypoints
print('Test on test dataset ..')
def save_keypoints(filename, keypoints):
# Reshape one sample keypoints into one line
keypoints = keypoints.reshape(keypoints.shape[0], -1)
np.savetxt(filename, keypoints, fmt='%0.4f')
test_set = ITOPDataset(root=data_dir, center_dir=center_dir, db=db, mode='test', transform=transform_test)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=6)
test_res_collector = BatchResultCollector(len(test_set), transform_output)
test_epoch(net, test_loader, test_res_collector, device, dtype)
keypoints_test = test_res_collector.get_result()
print("save test result")
save_keypoints('./experiments/itop_experiment/test_side_res.txt', keypoints_test)
# print('Fit on train dataset ..')
# fit_set = ITOPDataset(root=data_dir, center_dir=center_dir, db=db, mode='train', transform=transform_test)
# fit_loader = torch.utils.data.DataLoader(fit_set, batch_size=batch_size, shuffle=False, num_workers=6)
# fit_res_collector = BatchResultCollector(len(fit_set), transform_output)
# test_epoch(net, fit_loader, fit_res_collector, device, dtype)
# keypoints_fit = fit_res_collector.get_result()
# save_keypoints('./experiments/itop_experiment/fit_res.txt', keypoints_fit)
print('All done ..')