-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathCal_Stock_Identify.py
357 lines (321 loc) · 14.9 KB
/
Cal_Stock_Identify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
'''
會在此用演算法計算選股的演算
並利用此驗證股票的價格
架構上Method , Decision , Identify 三個差不多
del 方法
https://python-reference.readthedocs.io/en/latest/docs/dunderdsc/delete.html
'''
import Get_Stock_Data_Save_Load as st_data
from time import time as clock
import math
score_Ratio = [0.4,0.3,0.2,0.05,0.05] #購買比例,選股演算結果排名後,依照比例購入
Method_Name = ['潛伏天數1d','潛伏天數2d','均勻獲利','潛伏天數1d_Exp','潛伏天數_ExpAbs']
Method_Format = [[0,0,0,0,0],
[0,0,0,0,0],
[0,0,0,0,0],
[0,0,0,0,0],
[0,0,0,0,0]
]
def Index_Method_Name(name = ''):
return Method_Format[Method_Name.index(name)]
class Method():
global Method_Name
def __init__(self):
self.Paramater = []
self.InputData = []
self.EveryDayScore = []
self.Result = []
self.Ranks = []
self.History = []
self.Final_Score = 0
def __delete__(self, instance):
del self.Paramater
del self.InputData
del self.EveryDayScore
del self.Result
del self.Ranks
del self.History
del self.Final_Score
def Basic_Cal(self): #取得基本的漲跌資料,主要是以當天結算跟明天結算的比例差
self.EveryDayScore = st_data.List_1d_Score_Data
'''
self.EveryDayScore = []
for i in st_data.Stock_Data:
aa = i['Close']
bb = aa.shift(-1)
bb.fillna(method='pad', inplace=True)
cc = bb/aa
#print("EverySay Score",cc)
self.EveryDayScore.append(cc)
'''
def Get_Rank(self,data): #經過演算後取得排序,並依照購買比例算價格
self.Ranks = []
self.History = []
Current_Score = 1
#print("in Decisoin datas Length",len(data[0]))
#for i in data:
#print("Each_Length",len(i))
aa = [1, 1, 1, 1, 1]
for i in range(len(data[0])):
student_sort = sorted(data, key=lambda datas: datas[i] , reverse=True)
#print("student_sort",student_sort)
aa = [student_sort[0][0],student_sort[1][0],student_sort[2][0],student_sort[3][0],student_sort[4][0]]
#print(aa)
self.Ranks.append(aa)
#print("Total Rank_Length",len(self.Ranks))
#print("Total EveryDayScore_Length", len(self.EveryDayScore),len(self.EveryDayScore[0]))
#print("in Identify Rank Length",len(self.Ranks))
del self.Ranks[0] # Delect culoumun index
#del self.Ranks[0]
self.Result = []
#for i in self.InputData:
#print("InputData",len(i))
for i in range(len(self.Ranks)):
if i< 20:
Current_Score = 1
signal_history = [[1],[1],[1],[1],[1]]
setp_Score = 1
else:
setp_Score = 0
p_Score = 1
signal_history = []
#print(self.Ranks[i])
for j in range(5):
p_Score = self.InputData[self.Ranks[i][j]][i]
#p_Score *= (self.EveryDayScore[self.Ranks[i][j]][i]) * self.InputData[self.Ranks[i][j]][i]
setp_Score += p_Score * score_Ratio[j]
signal_history.append([st_data.Stock_index[self.Ranks[i][j]][1],"%.2f" %((p_Score-1)*100)])
#setp_Score += 1
'''
setp_Score = self.EveryDayScore[self.Ranks[i][0]][i]
'''
#signal_history.[setp_Score,signal_history]
#signal_history.append([setp_Score,signal_history])
Current_Score = Current_Score * setp_Score
self.Result.append(Current_Score)
self.History.append(["%.2f" %((setp_Score-1)*100),signal_history])
#print("Get Fineal Result",self.History)
def Get_Rank_Exp(self,data): #經過演算後取得排序,並依照購買比例算價格,但是使用expolation將之前的結果做衰竭
self.Ranks = []
self.History = []
Current_Score = 1
#print("in Decisoin datas Length",len(data[0]))
#for i in data:
#print("Each_Length",len(i))
aa = [1, 1, 1, 1, 1]
for i in range(len(data[0])):
student_sort = sorted(data, key=lambda datas: datas[i] , reverse=True)
#print("student_sort",student_sort)
aa = [student_sort[0][0],student_sort[1][0],student_sort[2][0],student_sort[3][0],student_sort[4][0]]
#print(aa)
self.Ranks.append(aa)
#print("Total Rank_Length",len(self.Ranks))
#print("Total EveryDayScore_Length", len(self.EveryDayScore),len(self.EveryDayScore[0]))
#print("in Identify Rank Length",len(self.Ranks))
del self.Ranks[0] # Delect culoumun index
#del self.Ranks[0]
self.Result = []
#for i in self.InputData:
#print("InputData",len(i))
#print("expss_Start")
expss = math.exp(1)
#print("expss",expss)
Total_Length = len(self.Ranks)
#print("Total_Length",Total_Length)
for i in range(len(self.Ranks)):
if i< 20:
Current_Score = 1
signal_history = [[1],[1],[1],[1],[1]]
setp_Score = 1
else:
setp_Score = 0
p_Score = 1
signal_history = []
#print(self.Ranks[i])
for j in range(5):
p_Score = self.InputData[self.Ranks[i][j]][i]
#p_Score *= (self.EveryDayScore[self.Ranks[i][j]][i]) * self.InputData[self.Ranks[i][j]][i]
setp_Score += p_Score * score_Ratio[j]
signal_history.append([st_data.Stock_index[self.Ranks[i][j]][1],"%.2f" %((p_Score-1)*100)])
#setp_Score += 1
'''
setp_Score = self.EveryDayScore[self.Ranks[i][0]][i]
'''
#signal_history.[setp_Score,signal_history]
#signal_history.append([setp_Score,signal_history])
#aa = ((i+1)/Total_Length)*0.2+0.9#(math.exp(i/Total_Length)/5)+1
aa = math.exp(i/Total_Length)/math.exp(1)
if aa > 1.0:
aa = 1.0
setp_Score = ((setp_Score -1)*aa)+1
Current_Score = Current_Score * setp_Score
#print("Final aa",aa)
self.Result.append(Current_Score)
self.History.append(["%.2f" %((setp_Score-1)*100),signal_history])
#print("Get Fineal Result",self.History)
def Method_Cal(self,paramater,data):
self.Paramater = paramater[2]
self.InputData = data
self.dataTemp = []
start = clock()
if self.Paramater[0] == Method_Name[0]: # '潛伏天數_1d'
#計算潛伏天數 * 放大率
#self.Basic_Cal()
self.EveryDayScore = st_data.List_1d_Score_Data
#print("Every Days Data 1d", self.EveryDayScore)
Datas_Step1 = []
for i in range(len(self.EveryDayScore)): # Each
score = 1
MultiBase = 0
each_Step1_Data = [i]
for j in range(len(self.EveryDayScore[i])):
aa = self.EveryDayScore[i][j]
MultiBase = (MultiBase * self.Paramater[1][0] + self.EveryDayScore[i][j]) / (self.Paramater[1][0] +1)
if (abs((MultiBase -1)*100) < abs(self.Paramater[1][1])):
score += abs(self.Paramater[1][2])
else:
score /= abs(self.Paramater[1][2])
score = score * MultiBase
each_Step1_Data.append(score)
Datas_Step1.append(each_Step1_Data)
#print("in Decision Do Pre Datas",len(self.EveryDayScore[0]))
self.Get_Rank(Datas_Step1)
end = clock()
self.Final_Score = self.Result[-1]
'''
lan = int(len(self.Result) / 5)
a1 = self.Result[-(lan * 4): -(lan * 3)]
a2 = self.Result[-(lan * 3): -(lan * 2)]
a3 = self.Result[-(lan * 2): -(lan * 1)]
a4 = self.Result[-(lan * 1):]
b1 = (sum(a1) / len(a1)) - min(a1)
b2 = (sum(a2) / len(a2)) - min(a2)
b3 = (sum(a3) / len(a3)) - min(a3)
b4 = (sum(a4) / len(a4)) - min(a4)
li = [b1, b2, b3, b4]
av = sum(li) / len(li)
ag = 1 / ((max(li) - (av)) / av)
self.Final_Score = ag *ag * self.Result[-1]
'''
print("Identify Time cost",end-start)
return self.Result
if self.Paramater[0] == Method_Name[1]: # '潛伏天數_2d'
#計算潛伏天數 * 放大率
#self.Basic_Cal()
self.EveryDayScore = st_data.List_2d_Score_Data
#print("Every Days Data 2d",self.EveryDayScore)
Datas_Step1 = []
for i in range(len(self.EveryDayScore)): # Each
score = 1
MultiBase = 0
each_Step1_Data = [i]
for j in range(len(self.EveryDayScore[i])):
aa = self.EveryDayScore[i][j]
MultiBase = (MultiBase * self.Paramater[1][0] + self.EveryDayScore[i][j]) / (self.Paramater[1][0] +1)
if (abs((MultiBase -1)*100) < abs(self.Paramater[1][1])):
score += abs(self.Paramater[1][2])
else:
score /= abs(self.Paramater[1][2])
score = score * MultiBase
each_Step1_Data.append(score)
Datas_Step1.append(each_Step1_Data)
#print("in Decision Do Pre Datas",len(self.EveryDayScore[0]))
self.Get_Rank(Datas_Step1)
end = clock()
self.Final_Score = self.Result[-1]
print("Identify Time cost",end-start)
return self.Result
if self.Paramater[0] == Method_Name[2]: # '均勻獲利'
# 計算潛伏天數 * 放大率
# self.Basic_Cal()
self.EveryDayScore = st_data.List_1d_Score_Data
# print("Every Days Data 1d", self.EveryDayScore)
Datas_Step1 = []
for i in range(len(self.EveryDayScore)): # Each
score = 1
MultiBase = 0
each_Step1_Data = [i]
for j in range(len(self.EveryDayScore[i])):
aa = self.EveryDayScore[i][j]
MultiBase = (MultiBase * self.Paramater[1][0] + self.EveryDayScore[i][j]) / (
self.Paramater[1][0] + 1)
if (abs((MultiBase - 1) * 100) < abs(self.Paramater[1][1])):
score += abs(self.Paramater[1][2])
else:
score /= abs(self.Paramater[1][2])
score = score * MultiBase
each_Step1_Data.append(score)
Datas_Step1.append(each_Step1_Data)
# print("in Decision Do Pre Datas",len(self.EveryDayScore[0]))
self.Get_Rank(Datas_Step1)
end = clock()
'''
self.Final_Score = self.Result[-1]
'''
lan = int(len(self.Result) / 5)
a1 = self.Result[-(lan * 4): -(lan * 3)]
a2 = self.Result[-(lan * 3): -(lan * 2)]
a3 = self.Result[-(lan * 2): -(lan * 1)]
a4 = self.Result[-(lan * 1):]
b1 = (sum(a1) / len(a1)) - min(a1)
b2 = (sum(a2) / len(a2)) - min(a2)
b3 = (sum(a3) / len(a3)) - min(a3)
b4 = (sum(a4) / len(a4)) - min(a4)
li = [b1, b2, b3, b4]
av = sum(li) / len(li)
ag = 1 / ((max(li) - (av)) / av)
self.Final_Score = ag *ag * self.Result[-1]
print("Identify Time cost", end - start)
return self.Result
if self.Paramater[0] == Method_Name[3]: # '潛伏天數_1d_Exp'
#計算潛伏天數 * 放大率
#self.Basic_Cal()
self.EveryDayScore = st_data.List_1d_Score_Data
#print("Every Days Data 1d", self.EveryDayScore)
Datas_Step1 = []
for i in range(len(self.EveryDayScore)): # Each
score = 1
MultiBase = 0
each_Step1_Data = [i]
for j in range(len(self.EveryDayScore[i])):
aa = self.EveryDayScore[i][j]
MultiBase = (MultiBase * self.Paramater[1][0] + self.EveryDayScore[i][j]) / (self.Paramater[1][0] +1)
if (abs((MultiBase -1)*100) < abs(self.Paramater[1][1])):
score += abs(self.Paramater[1][2])
else:
score /= abs(self.Paramater[1][2])
score = score * MultiBase
each_Step1_Data.append(score)
Datas_Step1.append(each_Step1_Data)
#print("in Decision Do Pre Datas",len(self.EveryDayScore[0]))
self.Get_Rank_Exp(Datas_Step1)
end = clock()
self.Final_Score = self.Result[-1]
#print("Identify Time cost",end-start)
return self.Result
if self.Paramater[0] == Method_Name[4]: # '潛伏天數_1d_Exp_Abs'
#計算潛伏天數 * 放大率
#self.Basic_Cal()
self.EveryDayScore = st_data.List_1d_Score_Data
#print("Every Days Data 1d", self.EveryDayScore)
Datas_Step1 = []
for i in range(len(self.EveryDayScore)): # Each
score = 1
MultiBase = 0
each_Step1_Data = [i]
for j in range(len(self.EveryDayScore[i])):
aa = abs(self.EveryDayScore[i][j]-1) + 1
MultiBase = (MultiBase * self.Paramater[1][0] + aa) / (self.Paramater[1][0] +1)
if (abs((MultiBase -1)*100) < abs(self.Paramater[1][1])):
score += abs(self.Paramater[1][2])
else:
score /= abs(self.Paramater[1][2])
score = score * MultiBase
each_Step1_Data.append(score)
Datas_Step1.append(each_Step1_Data)
#print("in Decision Do Pre Datas",len(self.EveryDayScore[0]))
self.Get_Rank_Exp(Datas_Step1)
end = clock()
self.Final_Score = self.Result[-1]
print("Identify Time cost",end-start)
return self.Result