-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathBaselineModel.py
411 lines (370 loc) · 20 KB
/
BaselineModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# -*- coding: UTF-8 -*-
''' Baseline system using CRFtagger and SVM to perform NLU and SAP, respectively.
Training Process: training two models separately.
Test Process: raw text --> CRFtagger with lexical features --> user tag sequence
--> reshape into binary vecor --> OneVsRestClassifier(LinearSVC)
--> evaluate using precision-recall curve
Author : Xuesong Yang
Email : [email protected]
Created Date: Dec. 31, 2016
'''
import argparse
from utils import eval_intentPredict, eval_actPred, getActPred, writeTxt, checkExistence
from DataSetCSVagentActPred import DataSetCSVagentActPred
import numpy as np
from nltk.tag import CRFTagger
import os
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import precision_recall_fscore_support
import glob
def getUtterList(sents):
utter_lst = list()
for sent in sents:
words = [word for word, tag in sent]
utter_lst.append(words)
return utter_lst
def getTagBinaryVector(userTags_pred, userTag2id, userTag_vocab_size):
''' userTags_pred: [[(w1, tag1), (w2, tag2)],[]]
'''
vec = np.zeros((len(userTags_pred), userTag_vocab_size))
for idx, sample in enumerate(userTags_pred):
for word, tag in sample:
vec[idx, int(userTag2id[tag]) - 1] = 1
return vec
def writeUtterTag(sents, fname):
''' write user utter and user tags into a file.
each line constrains with the format: w1 w2 w3\ttag1 tag2 tag3
Inputs:
sents: a list of lists, [[(u'w1', tag1), (u'w2', tag2), (u'w3', tag3)], [...], [...]]
fname: target file name
'''
with open(fname, 'wb') as f:
for sent in sents:
tmp_words = list()
tmp_tags = list()
for word, tag in sent:
tmp_words.append(word.encode('utf-8'))
tmp_tags.append(tag.replace('tag-', '', 1))
sent_str = '{}\t{}'.format(' '.join(tmp_words), ' '.join(tmp_tags))
f.write('{}\n'.format(sent_str))
def eval_tagPredBaseline(y_true, y_pred, userTag2id, tag_vocab_size):
''' calculate performance score
Input:
y_true: true tags, [[(u'w1', tag1), (u'w2', tag2), (u'w3', tag3)], [...], [...]]
y_pred: predicted tags, [[(u'w1', tag1), (u'w2', tag2), (u'w3', tag3)], [...], [...]]
userTag2id: dict, mapping between id and tag
Output:
precision, recall, f1score, accuracy_frame.
'''
# calculate token-level scores
assert len(y_true) == len(y_pred), 'sample_nb is not the same.'
true_tag_1hot_noO = list()
for sample_true in y_true:
tmp_array = np.zeros((len(sample_true), tag_vocab_size))
for idx, (_, tag_true) in enumerate(sample_true):
if tag_true != 'tag-O':
tmp_array[idx, userTag2id[tag_true] - 1] = 1
true_tag_1hot_noO.extend(tmp_array.tolist())
pred_tag_1hot_noO = list()
for sample_pred in y_pred:
tmp_array = np.zeros((len(sample_pred), tag_vocab_size))
for idx, (_, tag_pred) in enumerate(sample_pred):
if tag_pred != 'tag-O':
tmp_array[idx, userTag2id[tag_pred] - 1] = 1
pred_tag_1hot_noO.extend(tmp_array.tolist())
true_tag_1hot_noO = np.asarray(true_tag_1hot_noO)
pred_tag_1hot_noO = np.asarray(pred_tag_1hot_noO)
assert true_tag_1hot_noO.shape == pred_tag_1hot_noO.shape, 'shape is not the same.'
precision, recall, fscore, _ = precision_recall_fscore_support(true_tag_1hot_noO.ravel(), pred_tag_1hot_noO.ravel(), beta=1.0, pos_label=1, average='binary')
# calculate frame-level scores
hit = 0.
sample_nb = len(y_true)
for sample_true, sample_pred in zip(y_true, y_pred):
str_true = ' '.join([x_true for (w, x_true) in sample_true])
str_pred = ' '.join([x_pred for (w, x_pred) in sample_pred])
if str_true == str_pred:
hit += 1.
accuracy_frame = hit * 1. / sample_nb
return (precision, recall, fscore, accuracy_frame)
def trainSlotTaggingModel(**argparams):
''' train slot tagging model using human annotated data
Input: userUtter
Output: target userTags
'''
print('<Slot Tagging Model>')
slotTagging_model = SlotTaggingModel(**argparams)
slotTagging_model.train(verbose=False)
return slotTagging_model
def trainIntentModel(train_data, dev_data, model_folder):
''' train intent prediction model using human annotated data
Input: bag-of-words of user utterances, Output: indicator matrix of agent actions
'''
print('<Intent Prediction Model>')
train_X_bow = getBagOfWords(train_data.userUtter_encodePad, train_data.word_vocab_size)
dev_X_bow = getBagOfWords(dev_data.userUtter_encodePad, dev_data.word_vocab_size)
intent_kwargs = {'train_X': train_X_bow,
'train_y_vecBin': train_data.userIntent_vecBin,
'dev_X': dev_X_bow,
'dev_y_vecBin': dev_data.userIntent_vecBin,
'dev_utter_txt': dev_data.userUtter_txt,
'dev_y_txt': dev_data.userIntent_txt,
'id2token': train_data.id2userIntent,
'prefix': 'intent-',
'task_name': 'pipeline',
'model_folder': model_folder}
intent_model = MultiLabelClassifier(**intent_kwargs)
intent_model.train(verbose=False)
return intent_model
def trainActModel(train_data, dev_data, model_folder):
print('<System Action Prediction Model>')
sap_kwargs = {'train_X': train_data.userTagIntent_vecBin[:, -1],
'train_y_vecBin': train_data.agentAct_vecBin,
'dev_X': dev_data.userTagIntent_vecBin[:, -1],
'dev_y_vecBin': dev_data.agentAct_vecBin,
'dev_utter_txt': dev_data.userUtter_txt,
'dev_y_txt': dev_data.agentAct_txt,
'id2token': train_data.id2agentAct,
'prefix': 'act-',
'task_name': 'oracle',
'model_folder': model_folder}
sap_model = MultiLabelClassifier(**sap_kwargs)
sap_model.train(verbose=False)
return sap_model
def getBagOfWords(utter_encodePad, word_vocab_size):
''' calculate BoW feature
Input: an 2-darray user utterance with zero padding
Output: 2-darray
'''
bow = np.zeros((utter_encodePad.shape[0], word_vocab_size))
for sample_idx, sample in enumerate(utter_encodePad):
bow[sample_idx] = np.bincount(sample, minlength=word_vocab_size + 1)[1:]
return bow
class SlotTaggingModel(object):
def __init__(self, **argparams):
self.train_data = argparams['train_data']
if self.train_data is not None:
assert isinstance(self.train_data, DataSetCSVagentActPred)
self.model_folder = argparams['model_folder']
self.model_fname = '{}/slotTagging.model'.format(self.model_folder)
def train(self, verbose=True):
assert self.train_data is not None, 'train_data is required.'
print('\ttraining ...')
# transform data
instance_list = self._transform_data(self.train_data)
userUtterTag_train_fname = '{}/userUtterTag_train.txt'.format(self.model_folder)
writeUtterTag(instance_list, userUtterTag_train_fname)
print('\ttrain_data={}'.format(userUtterTag_train_fname))
# train model
self.model = CRFTagger(verbose=verbose)
self.model.train(instance_list, self.model_fname)
print('\tmodel_fname={}'.format(self.model_fname))
print('\tsaving model ...')
def _transform_data(self, data):
''' convert textual utter and user tags into a list of lists that contain lists of (w, t) pairs
'''
userUtter_txt = data.userUtter_txt
userTag_txt = data.userTag_txt
instance_list = list()
for words, tags in zip(userUtter_txt, userTag_txt):
instance = [(word.strip(), tag.strip()) for word, tag in zip(words.decode('utf-8').strip().split(), tags.decode('utf-8').strip().split())]
instance_list.append(instance)
return instance_list
def predict(self, test_data):
'''return a list of lists, [[(w1, tag1), (w2, tag2), (w3, tag3)], [...], [...]]
'''
assert test_data is not None, 'test_data is required.'
assert isinstance(test_data, DataSetCSVagentActPred)
print('\tpredicting Slot Tags ...')
# transform data
instance_list = self._transform_data(test_data)
userUtterTag_test_fname = '{}/userUtterTag_test.target'.format(self.model_folder)
writeUtterTag(instance_list, userUtterTag_test_fname)
print('\ttag_target={}'.format(userUtterTag_test_fname))
instance_utter_list = getUtterList(instance_list)
# testing
results = self.model.tag_sents(instance_utter_list)
self.result_fname = '{}/userUtterTag_test.pred'.format(self.model_folder)
print('\ttag_pred={}'.format(self.result_fname))
writeUtterTag(results, self.result_fname)
precision, recall, fscore, accuracy_frame = eval_tagPredBaseline(instance_list, results, test_data.userTag2id, test_data.userTag_vocab_size)
print('\tprecision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}'.format(precision, recall, fscore, accuracy_frame))
return results
def load_model(self, verbose=True):
print('\tloading model ...')
self.model = CRFTagger(verbose=verbose)
self.model.set_model_file(self.model_fname)
class MultiLabelClassifier(object):
''' OneVsRestClassifier(LinearSVC) that is suitable for either
multi-label intent prediction or system action prediction
Input: binary vector, output: multi-label probs
'''
def __init__(self, **argparams):
self.train_X = argparams['train_X']
self.train_y_vecBin = argparams['train_y_vecBin']
self.dev_X = argparams['dev_X']
self.dev_y_vecBin = argparams['dev_y_vecBin']
self.dev_utter_txt = argparams['dev_utter_txt']
self.dev_y_txt = argparams['dev_y_txt']
self.model_folder = argparams['model_folder']
self.prefix = argparams['prefix']
self.task_name = argparams['task_name'] # 'oracle' or 'pipeline'
self.id2token = argparams['id2token']
def train(self, verbose=True):
assert self.train_X is not None and self.train_y_vecBin is not None, 'train_X and train_y_vecBin are required.'
assert self.dev_X is not None and self.dev_y_vecBin is not None, 'dev_X and dev_y_vecBin are required.'
print('\ttraining ...')
self.model = OneVsRestClassifier(SVC(kernel='linear', probability=True, verbose=verbose))
self.model.fit(self.train_X, self.train_y_vecBin)
probs = self.model.predict_proba(self.dev_X)
# evaluation for user intent
precision, recall, fscore, accuracy_frame, self.threshold = eval_intentPredict(probs, self.dev_y_vecBin)
print('\teval_dev: precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}, threshold={:.4f}'.format(precision, recall, fscore, accuracy_frame, self.threshold))
# write prediction results
dev_txt = getActPred(probs, self.threshold, self.id2token)
dev_pred_fname = '{}/{}_{}dev.pred'.format(self.model_folder, self.task_name, self.prefix)
writeTxt(dev_txt, dev_pred_fname, prefix=self.prefix, delimiter=';')
print('\tdev_pred={}'.format(dev_pred_fname))
# write target dev
dev_target_fname = '{}/{}_{}dev.target'.format(self.model_folder, self.task_name, self.prefix)
writeTxt(self.dev_y_txt, dev_target_fname, prefix=self.prefix, delimiter=';')
print('\tdev_target={}'.format(dev_target_fname))
# write utter dev
dev_utter_fname = '{}/utter_dev.txt'.format(self.model_folder)
writeTxt(self.dev_utter_txt, dev_utter_fname, prefix='', delimiter=None)
print('\tdev_utter={}'.format(dev_utter_fname))
# save model
self.model_fname = '{}/{}_{}model_F1={:.4f}_FrameAcc={:.4f}_th={:.4f}.npz'.format(
self.model_folder, self.task_name, self.prefix, fscore, accuracy_frame, self.threshold)
np.savez_compressed(self.model_fname, model=self.model, threshold=self.threshold)
print('\tsaving model: {}'.format(self.model_fname))
def predict(self, X, y_vecBin, X_utter_txt, y_txt):
print('\tpredicting ...')
probs = self.model.predict_proba(X)
preds_indicator, precision, recall, fscore, accuracy_frame = eval_actPred(probs, y_vecBin, self.threshold)
print('\tprecision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}'.format(precision, recall, fscore, accuracy_frame))
# write prediction test results
pred_txt = getActPred(probs, self.threshold, self.id2token)
pred_fname = '{}/{}_{}test.pred'.format(self.model_folder, self.task_name, self.prefix)
writeTxt(pred_txt, pred_fname, prefix=self.prefix, delimiter=';')
print('\ttest_pred={}'.format(pred_fname))
# write target test
target_fname = '{}/{}_{}test.target'.format(self.model_folder, self.task_name, self.prefix)
writeTxt(y_txt, target_fname, prefix=self.prefix, delimiter=';')
print('\ttest_target={}'.format(target_fname))
# write utter test
utter_fname = '{}/utter_test.txt'.format(self.model_folder)
writeTxt(X_utter_txt, utter_fname, prefix='', delimiter=None)
print('\ttest_utter={}'.format(utter_fname))
return preds_indicator
def load_model(self, model_fname):
assert os.path.exists(model_fname), 'model_fname is required.'
print('\tloading model: {}'.format(model_fname))
self.model_fname = model_fname
npz_fname = np.load(self.model_fname)
self.model = npz_fname['model'][()]
self.threshold = np.float(npz_fname['threshold'][()])
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--data-npz', dest='data_npz', help='.npz file that is saved as an instance of DataSetCSVagentActPred class, including train, dev, and test data, repectively.')
parser.add_argument('--train', dest='train_only', action='store_true',
help='perform training procedures for CRFtagger and OneVsRest SVMs if this option is activated.')
parser.add_argument('--test', dest='test_only', action='store_true',
help='perform testing for oracle models (CRFtagger, OneVsRest SVMs) and their pipelined model if this option is activated.')
parser.add_argument('--model-folder', dest='model_folder', help='model folder')
args = parser.parse_args()
argparams = vars(args)
train_only = argparams['train_only']
test_only = argparams['test_only']
assert train_only or test_only, 'Argument required: either --train, --test, or both.'
# load train and test data
npz_file = argparams['data_npz']
checkExistence(npz_file)
data_npz = np.load(npz_file)
train_data = data_npz['train_data'][()]
dev_data = data_npz['dev_data'][()]
test_data = data_npz['test_data'][()]
###################################################################################
##### Training SlotTagging, Intent Prediction, and AgentAct Prediction models #####
###################################################################################
if train_only:
if argparams['model_folder'] is None:
pid = os.getpid()
argparams['model_folder'] = './model/baseline_{}'.format(pid)
if not os.path.exists(argparams['model_folder']):
os.makedirs(argparams['model_folder'])
# slot tagging model
argparams['train_data'] = train_data
slotTagging_model = trainSlotTaggingModel(**argparams)
# user intent prediction model
userIntent_model = trainIntentModel(train_data, dev_data, argparams['model_folder'])
# agent action prediction model
agentAct_model = trainActModel(train_data, dev_data, argparams['model_folder'])
###################################################################################
##### Testing SlotTagging, Intent Prediction, and AgentAct Prediction models #####
###################################################################################
if test_only:
assert os.path.exists(argparams['model_folder']), 'model_folder is required.'
# Oracle results of agent action prediction
print('<Oracle Results of Agent Action Prediction>')
oracle_task_name = 'oracle'
oracle_prefix = 'act-'
sap_model_fname = glob.glob('{}/{}_{}*.npz'.format(argparams['model_folder'], oracle_task_name, oracle_prefix))[0]
sap_kwargs = {'train_X': None,
'train_y_vecBin': None,
'dev_X': None,
'dev_y_vecBin': None,
'dev_utter_txt': None,
'dev_y_txt': None,
'id2token': train_data.id2agentAct,
'prefix': oracle_prefix,
'task_name': oracle_task_name,
'model_folder': argparams['model_folder']}
sap_model = MultiLabelClassifier(**sap_kwargs)
sap_model.load_model(sap_model_fname)
_ = sap_model.predict(test_data.userTagIntent_vecBin[:, -1], test_data.agentAct_vecBin, test_data.userUtter_txt, test_data.agentAct_txt)
# Pipelined results of slot tagging
print('<Pipelined Results of Slot Tagging>')
argparams['train_data'] = None
userTag_model = SlotTaggingModel(**argparams)
userTag_model.load_model()
userTag_pred = userTag_model.predict(test_data) # [[(w1, tag1), (w2, tag2)], ... ]
userTag_vecBin_pred = getTagBinaryVector(userTag_pred, test_data.userTag2id, test_data.userTag_vocab_size)
# Pipelined results of intent prediction
print('<Pipelined Results of User Intent Prediction>')
userIntent_task_name = 'pipeline'
userIntent_prefix = 'intent-'
userIntent_model_fname = glob.glob('{}/{}_{}*.npz'.format(argparams['model_folder'], userIntent_task_name, userIntent_prefix))[0]
userIntent_kwargs = {'train_X': None,
'train_y_vecBin': None,
'dev_X': None,
'dev_y_vecBin': None,
'dev_utter_txt': None,
'dev_y_txt': None,
'id2token': train_data.id2userIntent,
'prefix': userIntent_prefix,
'task_name': userIntent_task_name,
'model_folder': argparams['model_folder']}
userIntent_model = MultiLabelClassifier(**userIntent_kwargs)
userIntent_model.load_model(userIntent_model_fname)
userUtter_X_bow = getBagOfWords(test_data.userUtter_encodePad, test_data.word_vocab_size)
userIntent_pred_indicator = userIntent_model.predict(userUtter_X_bow, test_data.userIntent_vecBin, test_data.userUtter_txt, test_data.userIntent_txt)
# Pipelined results of agent action prediction
print('<Pipelined Results of Agent Action Prediction>')
act_task_name = 'pipeline'
act_prefix = 'act-'
act_model_fname = glob.glob('{}/{}_{}*.npz'.format(argparams['model_folder'], 'oracle', act_prefix))[0]
act_kwargs = {'train_X': None,
'train_y_vecBin': None,
'dev_X': None,
'dev_y_vecBin': None,
'dev_utter_txt': None,
'dev_y_txt': None,
'id2token': train_data.id2agentAct,
'prefix': act_prefix,
'task_name': act_task_name,
'model_folder': argparams['model_folder']}
act_model = MultiLabelClassifier(**act_kwargs)
act_model.load_model(act_model_fname)
act_X_vecBin = np.hstack((userTag_vecBin_pred, userIntent_pred_indicator))
act_pred_indicator = act_model.predict(act_X_vecBin, test_data.agentAct_vecBin, test_data.userUtter_txt, test_data.agentAct_txt)