-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFrameAnalyzer_CN.py
370 lines (269 loc) · 11.8 KB
/
FrameAnalyzer_CN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import plotly
import multiprocessing
from multiprocessing import Process, freeze_support
import plotly.express
import imageio
import time
from Pixel import *
from tkinter import filedialog
import tkinter
import math
color_wheel_dim = (361,256,256)
non_color = -1
non_color_index = 360
step_area = 300
HUE_Threshold = 14 / 255
three_dim_output = (30,30,25)
value_special_color = {
0:"Red",
15:"Coral/OrangeRed",
30:"Brown/Copper",
45:"Amber",
60:"Olive/Yellow",
75:"Lime",
90:"Chartreuse green",
105:"Erin/Emerald",
120:"Green",
135:"Erin",
150:"Spring green",
165:"Jungle green",
180:"Cyan",
195:"Cerulean",
210:"Azure",
225:"Persian blue",
240:"Navy blue",
255:"Ultramarine",
270:"Violet",
285:"Lilac",
300:"Magenta",
315:"Magenta rose",
330:"Rose",
345:"Burgundy",
}#end of DICT : listed special color in EN
"""
#TODO:
1.Need parallelism optimization
2.Need SAVE/LOAD function
"""
def UI_ask_img(var=None):
file_path = None
file_path = filedialog.askopenfilename()
print(file_path)
var = file_path
return file_path
#END of method : ask using UI return file_path
def Button_UI(var=None):
app = tkinter.Tk()
labelExample = tkinter.Button(app, text="0")
buttonExample = tkinter.Button(app, text="Increase", width=30,
command=UI_ask_img(var))
buttonExample.pack()
labelExample.pack()
app.mainloop()
return None
#END of method : UI with Button for testing
def img_TO_Colorwheel_parallel(img):
color_wheel_toReturn = numpy.zeros(color_wheel_dim, dtype=numpy.longlong)
manager = multiprocessing.Manager()
return_dict = manager.list()
jobs = []
start = time.time()
split_num = math.ceil(img.shape[0]*img.shape[1] / (step_area**2) + 1)
img_divided = numpy.array_split(img,split_num)
#print(len(img_divided))
for i in img_divided:
p = multiprocessing.Process(target=img_TO_Colorwheel, args=(i, return_dict))
jobs.append(p)
#END of FOR : add and begin process
for p in jobs:
p.start()
for proc in jobs:
proc.join()
#END of FOR: letting all process ends
while(return_dict):
toMerge = return_dict.pop()
color_wheel_toReturn = merge_Colorwheel(color_wheel_toReturn,toMerge)
#END of while : merge data from different section of IMG
end = time.time()
print("Total TIME:" + str(end - start))
print("Avg time per step area:" + str((end - start)/split_num))
return color_wheel_toReturn
#END of method : COLOR WHEEL
def img_TO_Colorwheel(img,toReturn = []):
color_wheel_toReturn = numpy.zeros(color_wheel_dim, dtype=numpy.uint)
for i in img:
for j in i:
loc = color_wheel_location(j[0], j[1], j[2])
color_wheel_toReturn[loc] = color_wheel_toReturn[loc] + 1
# end of nested FOR: increament COUNT in color wheel
toReturn.append(color_wheel_toReturn)
return color_wheel_toReturn
#END of method : parallel calculating color wheel from IMG !!! NO parallelism
def merge_Colorwheel(array1,array2):
if numpy.array_equal(color_wheel_dim, array1.shape) & numpy.array_equal(color_wheel_dim, array2.shape):
return numpy.add(array1,array2)
else:
print("ERROR: NOT 2 color wheel to be added")
return
#end of merger color wheel
def img_TO_Colorwheel_non_parallel(img):
color_wheel_toReturn = numpy.zeros(color_wheel_dim, dtype=numpy.uint)
for i in img:
for j in i:
loc = color_wheel_location(j[0], j[1], j[2])
color_wheel_toReturn[loc] = color_wheel_toReturn[loc] + 1
# end of nested FOR: increament COUNT in color wheel
return color_wheel_toReturn
# END of method : parallel calculating color wheel from IMG !!! NO parallelism
class Frame:
def __init__(self):
self.full_ColWheel = numpy.zeros(color_wheel_dim,dtype=numpy.uint)
self.HUE_LIST = []
self.SAT_LIST = []
self.LUM_LIST = []
#END of constructor : take in NO-PARAMETER
def __init__(self,arr_pixel, merge_mode = False):
self.full_ColWheel = numpy.zeros(color_wheel_dim)
if merge_mode:
print("COLORWHEEL")
self.full_ColWheel = merge_Colorwheel(self.full_ColWheel,arr_pixel)
return
#IF :
print("NON_ColorWheel")
if arr_pixel.shape[2] != 3:
print(arr_pixel.shape)
return "ERROR : NOT standard RGB IMG"
for i in arr_pixel:
for j in i:
loc = color_wheel_location(j[0], j[1], j[2])
self.full_ColWheel[loc] = self.full_ColWheel[loc] + 1
#end of nested FOR: increament COUNT in color wheel
#end of CONSTRUCTOR : take-in array
def get_HUE(self):
HUE_list = numpy.array(self.full_ColWheel.sum(axis=(1,2)))
return HUE_list
#END of method get_HUE : return a HUE count list
def get_HUE_Normalize(self):
HUE_list = numpy.array(self.full_ColWheel.sum(axis=(1,2)))
HUE_list = numpy.divide(HUE_list,self.full_ColWheel.sum())
HUE_list = HUE_list[0:360]
return HUE_list
#END of method get_HUE : return a HUE count list
def get_Lum(self):
Lum_list = numpy.array(self.full_ColWheel.sum(axis=(0,1)))
return Lum_list
#END of method get_HUE : return a HUE count list
def get_Sat(self):
Sat_list = numpy.array(self.full_ColWheel.sum(axis=(0,2)))
return Sat_list
#END of method get_HUE : return a HUE count list
def UpdatetToPlot(self):
self.HUE_LIST = self.get_HUE()
self.SAT_LIST = self.get_Sat()
self.LUM_LIST = self.get_Lum()
def toString(self):
return "TO DO: FrameAnalyzer.toString()"
def toString_SAVE(self):
return "TO DO: FrameAnalyzer.toString_SAVE()"
def color_ICON(self):
ICON = []
for i in range(0,color_wheel_dim[0]-1):
if i in value_special_color:
ICON.append(value_special_color[i])
else:
ICON.append(str(i))
#end of FOR create a list of ICON
return ICON;
#end of method color_ICON : return a list of color legend
def toGetThreeDimArray(self):
count = numpy.zeros(three_dim_output,dtype=numpy.uint)
hue = numpy.zeros(three_dim_output)
HSV_Label = numpy.chararray(three_dim_output,itemsize=16)
toplot = {
"x": [],
"y": [],
"z": [],
"color": [],
"size": [],
"HSV_Label":[]
}
for i in range(color_wheel_dim[0]):
print("1st merge " + str(math.floor(i / color_wheel_dim[0] * 100)) + " %completed")
for j in range(color_wheel_dim[1]):
for k in range(color_wheel_dim[2]):
curr_coor = calu_color_spaceCoor(i,j,k,three_dim_output[0]/2,three_dim_output[1]/2,three_dim_output[2])
hue[(math.floor(curr_coor[0] + three_dim_output[0]/2),math.floor(curr_coor[1] + three_dim_output[1]/2),math.floor(curr_coor[2]))] = curr_coor[3]
HSV_Label[(math.floor(curr_coor[0] + three_dim_output[0]/2),math.floor(curr_coor[1] + three_dim_output[1]/2),math.floor(curr_coor[2]))] = "H=" + str(curr_coor[3]) + " S=" + str(curr_coor[4]) + " V=" + str(curr_coor[5])
count[(math.floor(curr_coor[0] + three_dim_output[0]/2),math.floor(curr_coor[1] + three_dim_output[1]/2),math.floor(curr_coor[2]))] = self.full_ColWheel[i,j,k] + count[(math.floor(curr_coor[0] + three_dim_output[0]/2),math.floor(curr_coor[1] + three_dim_output[1]/2),math.floor(curr_coor[2]))]
# end of triple for loop : pre-process data for display
for i in range(three_dim_output[0]):
print("2nd merge " + str(math.floor(i / color_wheel_dim[0]*100)) + " %completed")
for j in range(three_dim_output[1]):
for k in range(three_dim_output[2]):
toplot["x"].append(math.floor(i - three_dim_output[0]/2))
toplot["y"].append(math.floor(j - three_dim_output[1]/2))
toplot["z"].append(k)
toplot["color"].append(hue[i,j,k])
toplot["size"].append(count[i,j,k])
toplot["HSV_Label"].append(str(HSV_Label[i,j,k])[1:])
#print("i " + str(i) + "j " + str(j) + "k " + str(k) + str(count[i,j,k]))
return toplot
#end of method to Get the DICT for creating a 3D
def toDraw_3D(self,toplot,str_title = "色域空間"):
print("DRAWING Matrix")
fig = plotly.express.scatter_3d(toplot, x='x', y='y', z='z', size='size', color='color',
color_continuous_scale=plotly.colors.cyclical.HSV,
labels={"color":"色相HUE"},
hover_data = {"x":False,
"y":False,
"z":False,
"color":False,
"HSV_Label":True
}
)
# fig.update_layout(scene_zaxis_type="log")
fig.update_layout(title=str_title,
scene=dict(xaxis=dict(title='⇕彩度Saturation:颜色浓淡-和中心点xy平面上的距离\n近:淡❘远:浓', titlefont_color='black'),
yaxis=dict(title='↺色相Hue:偏离y=0直线的角度\n右:红❘上:绿❘左:青❘下:紫', titlefont_color='black'),
zaxis=dict(title='⤆明度Value:和中心点(0,0,0)的y轴垂直距离\n上:亮色❘下:暗色', titlefont_color='black'),
bgcolor='rgb(255, 255, 255)',
))
#This section setting the visual of the graph
fig.show()
return None
#end of method : Draw para:toplot
def toDraw_HUE(self):
self.UpdatetToPlot()
toPlot = dict(r=self.get_HUE_Normalize(),theta=self.color_ICON(),
strength = numpy.arange(self.full_ColWheel.shape[0]-1),
)
print(len(toPlot["r"]), len(toPlot["theta"]), len(toPlot["strength"]))
fig = plotly.express.line_polar(toPlot, r='r', theta='theta',
color="strength",
template="plotly_dark",
line_close=True,
)
fig.show()
#end of method : Draw Hue out
#
# def run():
# freeze_support()
# file_name = UI_ask_img()
# img = imageio.imread(file_name)
# var = img_TO_Colorwheel_parallel(img)
# var = Frame(var, True)
# print("Calculation Completed")
# var.toDraw_3D(var.toGetThreeDimArray(), str(file_name + "の色域空間"))
# input()
# exit(0)
if __name__ == '__main__':
freeze_support()
file_name = None
file_name = UI_ask_img()
#file_name = Button_UI(file_name)
img = imageio.v2.imread(file_name)
var = img_TO_Colorwheel_parallel(img)
var = Frame(var,True)
print("Calculation Completed, now merging data.")
var.toDraw_3D(var.toGetThreeDimArray(), str(file_name + " 的色相分析"))
input()