-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi_request.py
153 lines (136 loc) · 5.03 KB
/
api_request.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import openai
import threading
import time
import requests
from queue import Queue
CHATGPT_KEY = 'sk---' # input your keys here
GPT4_KEY = 'sk---'
openai.api_key = 'sk---'
openai.api_base = '--'
USING_OPENAI_API = True
def prompt_format(prompt_template, prompt_content):
return prompt_template.format(**prompt_content)
def get_response(message, model, max_tokens, temperature, candidate_n):
if USING_OPENAI_API:
response = openai.ChatCompletion.create(
model=model,
messages=message,
max_tokens=max_tokens,
temperature=temperature,
n=candidate_n)
if candidate_n == 1:
return_response = response.choices[0].message.content
else:
return_response = [response.choices[i].message.content for i in range(candidate_n)]
return return_response
else:
headers = {'Content-Type': 'application/json'}
if 'gpt-4' in model:
url = 'http://----'
else:
url = 'http://----'
history = [message[0]['content'], 'OK, I got it! I will finish the task following the above instructions.']
for m in message[1:-1]:
history.append(m['content'])
prompt = message[-1]['content']
data = {'prompt': prompt, 'history': history, 'model': model, 'uid': 'xx5ty',
'max_tokens': max_tokens, 'temperature': temperature, 'n': candidate_n}
if 'text-davinci' in model:
data['type'] = 'completion'
response = requests.post(url, json=data, headers=headers).json()
print(response['response'])
return response['response']
def api_single_request(message, model="gpt-3.5-turbo-1106", max_tokens=128, temperature=0.7, candidate_n=1,
rank=-1, result_queue=None):
request_cnt = 0
if candidate_n == 1:
temperature = 0
while True:
request_cnt += 1
if request_cnt > 20:
exit(0)
try:
return_response = get_response(message, model, max_tokens, temperature, candidate_n)
# single thread request
if rank == -1:
return return_response
# multi thread request
else:
result_queue.put({
'rank': rank,
'response': return_response
})
return
except Exception as e:
# raise e
# print(e)
print("API ERROR!")
time.sleep(1)
continue
def api_multi_request(messages, model="gpt-3.5-turbo-1106", max_tokens=128, temperature=0.7, candidate_n=1):
threads = []
result_queue = Queue()
gathered_response = []
for i in range(len(messages)):
t = threading.Thread(target=api_single_request,
args=(messages[i], model, max_tokens, temperature, candidate_n, i, result_queue))
threads.append(t)
t.start()
for t in threads:
t.join()
while not result_queue.empty():
gathered_response.append(result_queue.get())
assert len(gathered_response) == len(messages)
gathered_response.sort(key=lambda x: x['rank'])
gathered_response = [x['response'] for x in gathered_response]
return gathered_response
def chatgpt(prompt, model="gpt-3.5-turbo-1106", max_tokens=1000, temperature=0.7, candidate_n=1):
messages = [{'role': 'user', 'content': prompt}]
if 'gpt-4' in model:
openai.api_key = GPT4_KEY
else:
openai.api_key = CHATGPT_KEY
if len(messages) == 1:
return [api_single_request(messages[0], model, max_tokens, temperature, candidate_n)]
else:
return api_multi_request(messages, model, max_tokens, temperature, candidate_n)
def embedding_single_request(text, rank=-1, result_queue=None):
request_cnt = 0
while True:
request_cnt += 1
if request_cnt > 20:
exit(0)
try:
response = openai.Embedding.create(
model='text-embedding-ada-002',
input=text
)
embedding = response['data'][0]['embedding']
if rank == -1:
return embedding
else:
result_queue.put({
'rank': rank,
'response': embedding
})
return
except Exception as e:
print('API Error')
time.sleep(1)
continue
def embedding_multi_request(texts):
threads = []
result_queue = Queue()
gathered_response = []
for i in range(len(texts)):
t = threading.Thread(target=embedding_single_request, args=(texts[i], i, result_queue))
threads.append(t)
t.start()
for t in threads:
t.join()
while not result_queue.empty():
gathered_response.append(result_queue.get())
assert len(gathered_response) == len(texts)
gathered_response.sort(key=lambda x: x['rank'])
gathered_response = [x['response'] for x in gathered_response]
return gathered_response