forked from stevehoover/LF-Building-a-RISC-V-CPU-Core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrisc-v_shell.tlv
210 lines (180 loc) · 8.21 KB
/
risc-v_shell.tlv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
\m4_TLV_version 1d: tl-x.org
\SV
// This code can be found in: https://github.com/stevehoover/LF-Building-a-RISC-V-CPU-Core/risc-v_shell.tlv
m4_include_lib(['https://raw.githubusercontent.com/stevehoover/warp-v_includes/1d1023ccf8e7b0a8cf8e8fc4f0a823ebb61008e3/risc-v_defs.tlv'])
m4_include_lib(['https://raw.githubusercontent.com/stevehoover/LF-Building-a-RISC-V-CPU-Core/main/lib/risc-v_shell_lib.tlv'])
//---------------------------------------------------------------------------------
// /====================\
// | Sum 1 to 9 Program |
// \====================/
//
// Program to test RV32I
// Add 1,2,3,...,9 (in that order).
//
// Regs:
// x12 (a2): 10
// x13 (a3): 1..10
// x14 (a4): Sum
//
//m4_asm(ADDI, x0, x0, 1) //tests that we cannot write to x0
m4_test_prog()
//m4_asm_end()
//m4_define(['M4_MAX_CYC'], 50)
//---------------------------------------------------------------------------------
\SV
m4_makerchip_module // (Expanded in Nav-TLV pane.)
/* verilator lint_on WIDTH */
\TLV
// hello?
$reset = *reset;
// YOUR CODE HERE
// ...
// Program counter
$next_pc[31:0] = $reset ? 32'b0 :
$taken_br ? $br_tgt_pc[31:0] :
$is_jal ? $br_tgt_pc :
$is_jalr ? $jal_tgt_pc :
(32'h4 + $pc[31:0]);
$pc[31:0] = (>>1$next_pc);
$br_tgt_pc[31:0] = $pc + $imm;
$jal_tgt_pc[31:0] = $src1_value + $imm;
`READONLY_MEM($pc, $$instr[31:0]);
// Instr type decoding
// R, I, S, B, U, J
$is_r_instr = $instr[6:2] == 5'b01011 ||
$instr[6:2] ==? 5'b011x0 ||
$instr[6:2] == 5'b10100;
$is_i_instr = $instr[6:2] ==? 5'b0000x ||
$instr[6:2] ==? 5'b001x0 ||
$instr[6:2] == 5'b11001;
$is_s_instr = $instr[6:2] ==? 5'b0100x;
$is_b_instr = $instr[6:2] == 5'b11000;
$is_u_instr = $instr[6:2] ==? 5'b0x101;
$is_j_instr = $instr[6:2] == 5'b11011;
// Instr field decoding
$rs2[4:0] = $instr[24:20];
$rs1[4:0] = $instr[19:15];
$funct3[2:0] = $instr[14:12];
$rd[4:0] = $instr[11:7];
$opcode[6:0] = $instr[6:0];
// Pad with sign extension and then concatenate remaining bitfields
$imm[31:0] = $is_i_instr ? { {21{$instr[31]}}, $instr[30:20]} :
$is_s_instr ? { {21{$instr[31]}}, $instr[30:25], $instr[11:7] } :
$is_b_instr ? { {20{$instr[31]}}, $instr[7], $instr[30:25], $instr[11:8], 1'b0} :
$is_u_instr ? { $instr[31:12] , 12'b0 } :
$is_j_instr ? { {12{$instr[31]}}, $instr[19:12], $instr[20], $instr[30:21], 1'b0 } :
32'b0; // default
$rs2_valid = $is_r_instr || $is_s_instr || $is_b_instr;
$rs1_valid = $is_r_instr || $is_i_instr || $is_s_instr || $is_b_instr;
$funct3_valid = $is_r_instr || $is_i_instr || $is_s_instr || $is_b_instr;
$rd_valid = ($is_r_instr || $is_i_instr || $is_u_instr || $is_j_instr);
$opcode_valid = 1; //always true
$imm_valid = $is_i_instr || $is_s_instr ||
$is_b_instr || $is_u_instr || $is_j_instr;
`BOGUS_USE($rs2 $rs2_valid $rs1 $rs1_valid $funct3 $funct3_valid $rd $rd_valid $opcode $opcode_valid $imm_valid);
//instruction decoding
$dec_bits[10:0] = { $instr[30], $funct3[2:0], $opcode[6:0] };
$is_lui = $dec_bits ==? 11'bx_xxx_0110111;
$is_auipc = $dec_bits ==? 11'bx_xxx_0010111;
$is_jal = $dec_bits ==? 11'bx_xxx_1101111;
$is_jalr = $dec_bits ==? 11'bx_000_1100111;
$is_beq = $dec_bits ==? 11'bx_000_1100011;
$is_bne = $dec_bits ==? 11'bx_001_1100011;
$is_blt = $dec_bits ==? 11'bx_100_1100011;
$is_bge = $dec_bits ==? 11'bx_101_1100011;
$is_bltu = $dec_bits ==? 11'bx_110_1100011;
$is_bgeu = $dec_bits ==? 11'bx_111_1100011;
$is_load = $dec_bits ==? 11'bx_xxx_0000011; //generalized load by opcode
$is_addi = $dec_bits ==? 11'bx_000_0010011;
$is_slti = $dec_bits ==? 11'bx_010_0010011;
$is_sltiu = $dec_bits ==? 11'bx_011_0010011;
$is_xori = $dec_bits ==? 11'bx_100_0010011;
$is_ori = $dec_bits ==? 11'bx_110_0010011;
$is_andi = $dec_bits ==? 11'bx_111_0010011;
$is_slli = $dec_bits == 11'b0_001_0010011;
$is_srli = $dec_bits == 11'b0_101_0010011;
$is_srai = $dec_bits == 11'b1_101_0010011;
$is_add = $dec_bits == 11'b0_000_0110011;
$is_sub = $dec_bits == 11'b1_000_0110011;
$is_sll = $dec_bits == 11'b0_001_0110011;
$is_slt = $dec_bits == 11'b0_010_0110011;
$is_sltu = $dec_bits == 11'b0_011_0110011;
$is_xor = $dec_bits == 11'b0_100_0110011;
$is_srl = $dec_bits == 11'b0_101_0110011;
$is_sra = $dec_bits == 11'b1_101_0110011;
$is_or = $dec_bits == 11'b0_110_0110011;
$is_and = $dec_bits == 11'b0_111_0110011;
//branch taken logic
$taken_br =
$is_beq ? $src1_value == $src2_value :
$is_bne ? $src1_value != $src2_value :
$is_blt ? ($src1_value < $src2_value) ^ ($src1_value[31] != $src2_value[31]) :
$is_bge ? ($src1_value >= $src2_value) ^ ($src1_value[31] != $src2_value[31]) :
$is_bltu ? $src1_value < $src2_value :
$is_bgeu ? $src1_value >= $src2_value:
1'b0;
// set if less than results
$sltu_result[31:0] = {31'b0, $src1_value < $src2_value};
$sltiu_result[31:0] = {31'b0, $src2_value < $imm};
// Shift Right Arith.
// sign-ext src1
$sext_src1[63:0] = { {32{$src1_value[31]}}, $src1_value };
//64-bit sign-extd results ready for truncation
$sra_result[63:0] = $sext_src1 >> $src2_value[4:0];
$srai_result[63:0] = $sext_src1 >> $imm[4:0];
// ALU -> result
$result[31:0] =
$is_lui ? { $imm[31:12], 12'b0 } :
$is_auipc ? $pc + $imm :
$is_jal ? $pc + 32'd4 :
$is_jalr ? $pc + 32'd4 :
//$is_beq ?
//$is_bne = $dec_bits ==? 11'bx_001_1100011;
//$is_blt = $dec_bits ==? 11'bx_100_1100011;
//$is_bge = $dec_bits ==? 11'bx_101_1100011;
//$is_bltu = $dec_bits ==? 11'bx_110_1100011;
//$is_bgeu = $dec_bits ==? 11'bx_111_1100011;
$is_load ? $src1_value + $imm : //generalized load by opcode
$is_addi ? $src1_value + $imm :
$is_slti ? ( ( $src1_value[31] == $imm[31]) ?
$sltu_result : {31'b0, $src1_value[31]} ):
$is_sltiu ? ( ( $src1_value[31] == $imm[31]) ?
$sltiu_result : {31'b0, $src1_value[31]} ):
$is_xori ? $src1_value ^ $imm :
$is_ori ? $src1_value | $imm :
$is_andi ? $src1_value & $imm :
$is_slli ? $src1_value << $imm[5:0] :
$is_srli ? $src1_value >> $imm[5:0] :
$is_srai ? $srai_result[31:0] :
$is_add ? $src1_value + $src2_value :
$is_sub ? $src1_value - $src2_value :
$is_sll ? $src1_value << $src2_value[4:0] :
$is_slt ? ( ( $src1_value[31] == $src2_value[31]) ?
$sltu_result : {31'b0, $src1_value[31]}):
$is_sltu ? $sltu_result[31:0] :
$is_xor ? $src1_value ^ $src2_value :
$is_srl ? $src1_value >> $src2_value[4:0] :
$is_sra ? $sra_result[31:0] :
$is_or ? $src1_value | $src2_value :
$is_and ? $src1_value & $src2_value :
$is_s_instr ? $src1_value + $imm :
32'b0;
// Assert these to end simulation (before Makerchip cycle limit).
m4+tb()
*failed = *cyc_cnt > M4_MAX_CYC;
// replace wr_data with alu $result
$rf_wr_en = $rd_valid && ( $rd[4:0] != 5'b0 );
$rf_wr_data[31:0] = $is_load ? $dmem_rd_data : $result;
$dmem_wr_en = $is_s_instr;
$dmem_rd_en = $is_load;
$dmem_wr_data[31:0] = $src2_value; // from alu-> is_s_inst
$dmem_addr[4:0] = $result[6:2]; // calculated by alu
$ld_data[31:0] = $dmem_rd_data[31:0];
//$dmem_rd_data = // rd <= Dmem[add]
m4+rf(32, 32, $reset, $rf_wr_en, $rd[4:0], $rf_wr_data[31:0], $rs1_valid, $rs1[4:0], $src1_value, $rs2_valid, $rs2[4:0], $src2_value)
m4+dmem(32, 32, $reset, $dmem_addr[4:0], $dmem_wr_en, $dmem_wr_data[31:0], $dmem_rd_en, $dmem_rd_data)
//m4+rf(32, 32, $reset, $wr_en, $wr_index[4:0], $wr_data[31:0], $rd1_en, $rd1_index[4:0], $rd1_data, $rd2_en, $rd2_index[4:0], $rd2_data)
//m4+dmem(32, 32, $reset, $addr[4:0], $wr_en, $wr_data[31:0], $rd_en, $rd_data)
m4+cpu_viz()
\SV
endmodule