-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiris_fix.py
69 lines (50 loc) · 2.25 KB
/
iris_fix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import itertools
import pandas as pd
# Data sets
IRIS_TRAINING = "iris_training.csv"
IRIS_TEST = "iris_test.csv"
IRIS_PREDICT = "iris_predict.csv"
tf.logging.set_verbosity(tf.logging.INFO)
COLUMNS = ["SepalLength", "SepalWidth", "PetalLength", "PetatlWidth", "Species"]
FEATURES = ["SepalLength", "SepalWidth", "PetalLength", "PetatlWidth"]
LABEL = "Species"
def input_fn(data_set):
feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES}
labels = tf.constant(data_set[LABEL].values)
return feature_cols, labels
def main(unused_argv):
# Load datasets.
# Specify that all features have real-value data
#feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]
training_set=pd.read_csv(IRIS_TRAINING, skipinitialspace=True,skiprows=1, names=COLUMNS)
test_set = pd.read_csv(IRIS_TEST, skipinitialspace=True,
skiprows=1, names=COLUMNS)
prediction_set = pd.read_csv(IRIS_PREDICT, skipinitialspace=True,
skiprows=1, names=COLUMNS)
# Feature cols
feature_cols = [tf.contrib.layers.real_valued_column(k)
for k in FEATURES]
# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_cols,
hidden_units=[10, 20, 10],
n_classes=3,
model_dir="/tmp/iris_model")
# Fit model.
classifier.fit(input_fn=lambda: input_fn(training_set), steps=2000)
# Evaluate accuracy.
#accuracy_score = classifier.evaluate(x=test_set.data,
# y=test_set.target)["accuracy"]
# Score accuracy
accuracy_score = classifier.evaluate(input_fn=lambda: input_fn(test_set), steps=1)
print('Accuracy: {}'.format(accuracy_score))
# Classify two new flower samples.
y = classifier.predict(input_fn=lambda: input_fn(prediction_set))
predictions = list(itertools.islice(y, 2))
print("Predictions: {}".format(str(predictions)))
if __name__ == "__main__":
tf.app.run()