-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathstep2c_project.py
124 lines (100 loc) · 3.98 KB
/
step2c_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# step2c_project.py
"""Project the lifted, scaled snapshot training data to the low-dimensional
subspace spanned by the columns of the POD basis V, compute time derivative
information for the projected snapshots, and save the projected data.
Examples
--------
# Project 10,000 preprocessed snapshots.
$ python3 step2c_project.py 10000
# Project 20,000 preprocessed snapshots.
$ python3 step2c_project.py 20000
Loading Results
---------------
>>> import utils
>>> trainsize = 10000 # Number of snapshots used as training data.
>>> num_modes = 44 # Number of POD modes to use in the projection.
>>> Q_, Qdot_, t = utils.load_projected_data(trainsize, num_modes)
Command Line Arguments
----------------------
"""
import h5py
import logging
import numpy as np
import rom_operator_inference as opinf
import config
import utils
def project_and_save_data(Q, t, V):
"""Project preprocessed snapshots to a low-dimensional subspace.
Parameters
----------
Q : (NUM_ROMVARS*DOF,trainsize) ndarray
Preprocessed snapshot data to be projected.
t : (trainsize,) ndarray
Time domain corresponding to the snapshots.
V : (NUM_ROMVARS*DOF,r) ndarray
POD basis of rank r.
Returns
-------
Q_ : (r,trainsize) ndarray
Projected snapshots.
Qdot_ : (r,trainsize) ndarray
Time derivatives of projected snapshots.
"""
# Validate arguments.
if Q.shape[1] != t.shape[0]:
raise ValueError("training_data and time_domain not aligned")
# Verify that the time domain is uniformly spaced with spacing config.DT.
dt = t[1] - t[0]
if not np.allclose(np.diff(t), dt):
raise ValueError("t not uniformly spaced")
if not np.isclose(dt, config.DT):
raise ValueError("t spacing != config.DT")
# Project the snapshot data.
with utils.timed_block(f"Projecting snapshots to a {V.shape[1]:d}"
"-dimensional linear subspace"):
Q_ = V.T @ Q
# Compute time derivative data.
with utils.timed_block("Approximating time derivatives "
"of projected snapshots"):
Qdot_ = opinf.pre.xdot_uniform(Q_, dt, order=4)
# Save the projected training data.
save_path = config.projected_data_path(Q.shape[1])
with utils.timed_block("Saving projected data"):
with h5py.File(save_path, 'w') as hf:
hf.create_dataset("data", data=Q_)
hf.create_dataset("ddt", data=Qdot_)
hf.create_dataset("time", data=t)
logging.info(f"Projected data saved to {save_path}.\n")
return Q_, Qdot_
def main(trainsize):
"""Project lifted, scaled snapshot training data to the subspace spanned
by the columns of the POD basis V; compute velocity information for the
projected snapshots; and save the projected data.
Parameters
----------
trainsize : int
The number of snapshots to use in the computation. There must
exist a file of exactly `trainsize` lifted, scaled snapshots
(see step2a_transform.py) and a basis for those snapshots
(see step2b_basis.py).
"""
utils.reset_logger(trainsize)
# Load lifted, scaled snapshot data.
scaled_data, time_domain, _, _ = utils.load_scaled_data(trainsize)
# Load the POD basis.
V, _, _ = utils.load_basis(trainsize, None)
# Project and save the data.
return project_and_save_data(scaled_data, time_domain, V)
# =============================================================================
if __name__ == "__main__":
# Set up command line argument parsing.
import argparse
parser = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.usage = f""" python3 {__file__} --help
python3 {__file__} TRAINSIZE"""
parser.add_argument("trainsize", type=int,
help="number of snapshots in the training data")
# Do the main routine.
args = parser.parse_args()
main(args.trainsize)