-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_ddp.py
469 lines (367 loc) · 17.9 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import os
os.environ['NCCL_BLOCKING_WAIT'] = '0'
os.environ['TORCH_NCCL_BLOCKING_WAIT'] = '0'
import argparse
import random
from tqdm import tqdm
from datetime import datetime, timedelta
from collections import OrderedDict
import torch
import numpy as np
import pandas as pd
import pytorch_warmup as warmup
import torch.distributed as dist
from configs import *
from inference import *
from ofold.np import residue_constants
from flowmatch import flowmatcher
from model import main_network
from flowmatch.data import utils as du
from flowmatch.data import all_atom
from evaluation.metrics import *
from evaluation.loss import *
from data.utils import *
from data.loader import *
from data.data import *
def train_epoch(args, model, flow_matcher, optimizer, lr_scheduler, warmup_scheduler, dataloader):
model.train()
optimizer.zero_grad()
n_data = 0
avg_sample_time = 0
total_loss = 0
aa_loss = 0
msa_loss = 0
ec_loss = 0
rot_loss = 0
trans_loss = 0
bb_atom_loss = 0
dist_mat_loss = 0
trained_step = 0
for train_feats in tqdm(dataloader):
train_feats = {
k: v.to(args.device) if torch.is_tensor(v) else v for k, v in train_feats.items()
}
if (
args.embed.embed_self_conditioning
and trained_step % 2 == 1
):
with torch.no_grad():
train_feats = self_conditioning_fn(args, model, train_feats)
model_out = model(train_feats)
loss, aux_data = loss_fn(args, train_feats, model_out, flow_matcher)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_norm)
optimizer.step()
with warmup_scheduler.dampening():
lr_scheduler.step()
n_data += aux_data['examples_per_step']
avg_sample_time += aux_data['batch_time'].sum().item()
total_loss += aux_data['total_loss'] * aux_data['examples_per_step']
aa_loss += aux_data['aa_loss'] * aux_data['examples_per_step']
msa_loss += aux_data['msa_loss'] * aux_data['examples_per_step']
ec_loss += aux_data['ec_loss'] * aux_data['examples_per_step']
rot_loss += aux_data['rot_loss'] * aux_data['examples_per_step']
trans_loss += aux_data['trans_loss'] * aux_data['examples_per_step']
bb_atom_loss += aux_data['bb_atom_loss'] * aux_data['examples_per_step']
dist_mat_loss += aux_data['dist_mat_loss'] * aux_data['examples_per_step']
trained_step += 1
if torch.cuda.is_available(): torch.cuda.empty_cache()
total_loss = total_loss / n_data
avg_sample_time = avg_sample_time / n_data
aa_loss = aa_loss / n_data
msa_loss = msa_loss / n_data
ec_loss = ec_loss / n_data
rot_loss = rot_loss / n_data
trans_loss = trans_loss / n_data
bb_atom_loss = bb_atom_loss / n_data
dist_mat_loss = dist_mat_loss / n_data
return total_loss, avg_sample_time, aa_loss, msa_loss, ec_loss, rot_loss, trans_loss, bb_atom_loss, dist_mat_loss
def eval_epoch(args, epoch, model, flow_matcher, dataloader, min_t=None, num_t=None, noise_scale=1.0, context=None):
ckpt_eval_metrics = []
CA_IDX = residue_constants.atom_order["CA"]
for valid_feats, pdb_names in tqdm(dataloader):
res_mask = du.move_to_np(valid_feats["res_mask"].bool())
flow_mask = du.move_to_np(valid_feats["flow_mask"].bool())
gt_aatype = du.move_to_np(valid_feats["aatype"])
gt_protein_pos = du.move_to_np(all_atom.to_atom37(ru.Rigid.from_tensor_7(valid_feats["rigids_1"].type(torch.float32)))[0])
gt_ec = du.move_to_np(valid_feats["ec_1"])
ligand_pos = du.move_to_np(valid_feats["ligand_pos"])
ligand_atom = du.move_to_np(valid_feats["ligand_atom"])
ligand_mask = du.move_to_np(valid_feats["ligand_mask"].bool())
batch_size = res_mask.shape[0]
valid_feats = {
k: v.to(args.device) if torch.is_tensor(v) else v for k, v in valid_feats.items()
}
# Run inference
infer_out = inference_fn(
args,
init_feats = valid_feats,
gen_model = flow_matcher,
main_network = model,
min_t = min_t,
max_t = 1.0,
num_t = num_t,
self_condition = False,
center = True,
aa_do_purity = False,
msa_do_purity = False,
ec_do_purity = False,
rot_sample_schedule = 'linear',
trans_sample_schedule = 'linear',
)
final_prot = {
"t_1": infer_out["t"][0],
"pos_1": infer_out["coord_traj"][0],
"aa_1": infer_out["aa_traj"][0],
"ec_1": infer_out["ec_traj"][0],
}
if torch.cuda.is_available(): torch.cuda.empty_cache()
for i in range(batch_size):
num_res = int(np.sum(res_mask[i]).item())
unpad_flow_mask = flow_mask[i][res_mask[i]]
unpad_protein = {
"pos": final_prot['pos_1'][i][res_mask[i]],
"aatype": final_prot['aa_1'][i][res_mask[i]],
"ec": final_prot['ec_1'][i],
}
pred_aatype = unpad_protein["aatype"]
pred_ec = unpad_protein["ec"].item()
pred_portein_pos = unpad_protein["pos"]
unpad_gt_protein_pos = gt_protein_pos[i][res_mask[i]]
unpad_gt_aatype = gt_aatype[i][res_mask[i]]
unpad_gt_ec = gt_ec[i][0]
unpad_gt_ligand_pos = ligand_pos[i][ligand_mask[i]]
unpad_gt_ligand_atom = ligand_atom[i][ligand_mask[i]]
prot_dir = os.path.join(args.evaluation_dir, pdb_names[i])
if not os.path.isdir(prot_dir):
os.makedirs(prot_dir, exist_ok=True)
prot_path = os.path.join(
prot_dir, f"{pdb_names[i]}_sample_{i}_epoch{epoch}.pdb",
)
saved_path = write_prot_to_pdb(
prot_pos=pred_portein_pos,
file_path=prot_path,
aatype=pred_aatype,
no_indexing=True,
b_factors=np.tile(unpad_flow_mask[..., None], 37) * 100,
)
try:
sample_metrics, tm = protein_metrics(
pdb_path=saved_path,
atom37_pos=pred_portein_pos,
pred_aatype=pred_aatype,
gt_atom37_pos=unpad_gt_protein_pos,
gt_aatype=unpad_gt_aatype,
flow_mask=unpad_flow_mask,
)
except ValueError as e:
print(f"Failed evaluation of length {num_res} sample {i}: {e}")
continue
n_bb_atom = 3
amino_acid_recovery = compute_amino_acid_recovery_rate(pred_aatype, unpad_gt_aatype, res_mask[i])
bb_pred_dist = compute_protein_ligand_dist(pred_portein_pos[..., :n_bb_atom, :].reshape(-1, 3), unpad_gt_ligand_pos)
bb_gt_dist = compute_protein_ligand_dist(unpad_gt_protein_pos[..., :n_bb_atom, :].reshape(-1, 3), unpad_gt_ligand_pos)
bb_gt_dist_mask = (bb_gt_dist > 0.) * (bb_gt_dist < args.eval.dist_loss_filter)
ca_pred_dist = bb_pred_dist.reshape(num_res, n_bb_atom, -1)[..., CA_IDX, :]
ca_gt_dist = bb_gt_dist.reshape(num_res, n_bb_atom, -1)[..., CA_IDX, :]
ca_gt_dist_mask = (ca_gt_dist > 0.) * (ca_gt_dist < args.eval.dist_loss_filter)
ca_rmsd = compute_rmsd(ca_pred_dist, ca_gt_dist, ca_gt_dist_mask)
bb_rmsd = compute_rmsd(bb_pred_dist, bb_gt_dist, bb_gt_dist_mask)
ec_acc = unpad_gt_ec == pred_ec
eval_metric = {}
eval_metric["epoch"] = epoch
eval_metric["gt_ec"] = unpad_gt_ec
eval_metric["pred_ec"] = pred_ec
eval_metric["ec_accuracy"] = ec_acc
eval_metric["gt_pdb"] = pdb_names[i]
eval_metric["amino_acid_recovery"] = amino_acid_recovery
eval_metric["ca_rmsd"] = ca_rmsd
eval_metric["bb_rmsd"] = bb_rmsd
eval_metric["sample_path"] = saved_path
eval_metric.update(sample_metrics)
ckpt_eval_metrics.append(eval_metric)
# Save metrics as CSV.
eval_metrics_csv_path = os.path.join(args.evaluation_dir, "metrics.csv")
if not os.path.exists(eval_metrics_csv_path):
ckpt_eval_metrics = pd.DataFrame(ckpt_eval_metrics)
ckpt_eval_metrics.to_csv(eval_metrics_csv_path, index=False)
else:
with open(eval_metrics_csv_path, 'a') as eval_csv:
ckpt_eval_metrics = pd.DataFrame(ckpt_eval_metrics)
ckpt_eval_metrics.to_csv(eval_csv, index=False)
return ckpt_eval_metrics
def main(args):
print('initializing muti-gpu training...')
local_rank = args.local_rank
torch.cuda.set_device(local_rank)
args.device = torch.device('cuda', local_rank)
dist.init_process_group('nccl' if dist.is_nccl_available() else 'gloo', timeout=timedelta(seconds=7200000000))
rank = dist.get_rank()
flow_matcher = flowmatcher.SE3FlowMatcher(args)
model = main_network.ProteinLigandNetwork(args)
current_pointer = 0
best_tm_score = 0
best_epoch = 0
starting_epoch = 0
if args.ckpt_from_pretrain and args.pretrain_ckpt_path is not None:
print(f'loading pretrained model from checkpoint {args.pretrain_ckpt_path}')
checkpoint = torch.load(args.pretrain_ckpt_path, map_location='cpu')
model_state_dict = checkpoint["model_state_dict"]
new_state_dict = OrderedDict()
for k, v in model_state_dict.items():
name = k # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict, strict=False)
if args.ckpt_path is not None:
print(f'resume training for {args.ckpt_path}')
checkpoint = torch.load(args.ckpt_path, map_location='cpu')
model_state_dict = checkpoint["model_state_dict"]
new_state_dict = OrderedDict()
for k, v in model_state_dict.items():
name = k # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict, strict=True)
starting_epoch = checkpoint["epoch"]
best_tm_score = checkpoint["best_tm_score"]
starting_epoch += 1
model.cuda(local_rank)
if rank == 0 and local_rank == 0:
num_parameters = sum(p.numel() for p in model.parameters())
print(f"Number of model parameters {num_parameters}")
with open(f'{args.logger_dir}/{args.date}.txt', 'a') as logger:
logger.write(f"Number of model parameters {num_parameters}\n")
logger.close()
model_dp = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True)
print('loading data...')
trn_data = PdbDataset(
args = args,
gen_model = flow_matcher,
is_training = True,
)
trn_sampler = torch.utils.data.distributed.DistributedSampler(trn_data)
trn_loader = create_data_loader(
trn_data,
sampler=trn_sampler,
length_batch=True,
batch_size=args.trn_batch_size,
shuffle=False,
num_workers=args.num_worker,
drop_last=False,
)
optimizer = torch.optim.AdamW(model_dp.parameters(), lr=args.lr, weight_decay=args.weight_decay)
warmup_steps = len(trn_loader) * args.epochs
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=warmup_steps, eta_min=args.lr_min)
warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)
if rank == 0 and local_rank == 0:
val_data = PdbDataset(
args = args,
gen_model = flow_matcher,
is_training = False,
)
val_loader = create_data_loader(
val_data,
sampler=None,
length_batch=True,
batch_size=args.val_batch_size,
shuffle=False,
num_workers=0,
drop_last=False,
)
for epoch in range(starting_epoch, args.epochs):
trn_sampler.set_epoch(epoch)
### Train
print(f'#### TRAINING epoch {epoch}')
total_loss, avg_sample_time, aa_loss, msa_loss, ec_loss, rot_loss, trans_loss, bb_atom_loss, dist_mat_loss = train_epoch(args, model, flow_matcher, optimizer, lr_scheduler, warmup_scheduler, trn_loader)
if rank == 0 and local_rank == 0:
print(f'Train epoch: {epoch}, total_loss: {total_loss:.5f}, avg_time: {avg_sample_time:.5f}, aa_loss: {aa_loss:.5f}, msa_loss: {msa_loss:.5f}, ec_loss: {ec_loss:.5f}, rot_loss: {rot_loss:.5f}, trans_loss: {trans_loss:.5f}, bb_loss: {bb_atom_loss:.5f}, dist_mat_loss: {dist_mat_loss:.5f}')
with open(f'{args.logger_dir}/{args.date}.txt', 'a') as logger:
logger.write(f'Train epoch: {epoch}, total_loss: {total_loss:.5f}, avg_time: {avg_sample_time:.5f}, aa_loss: {aa_loss:.5f}, msa_loss: {msa_loss:.5f}, ec_loss: {ec_loss:.5f}, rot_loss: {rot_loss:.5f}, trans_loss: {trans_loss:.5f}, bb_loss: {bb_atom_loss:.5f}, dist_mat_loss: {dist_mat_loss:.5f}\n')
logger.close()
### Eval
if rank == 0 and local_rank == 0:
if (epoch+1) % args.eval.eval_freq == 0:
print(f'#### EVALUATION epoch {epoch}')
eval_metrics = eval_epoch(args, epoch, model_dp.module, flow_matcher, val_loader)
eval_aar = np.array(eval_metrics["amino_acid_recovery"]).mean()
eval_ca_rmsd = np.array(eval_metrics["ca_rmsd"]).mean()
eval_bb_rmsd = np.array(eval_metrics["bb_rmsd"]).mean()
eval_tm_score = np.array(eval_metrics["tm_score"]).mean()
eval_tm_rmsd = np.array(eval_metrics["tm_rmsd"]).mean()
eval_ec_accuracy = np.array(eval_metrics["ec_accuracy"]).mean()
print(f'Eval epoch: {epoch}, amino_acid_recovery: {eval_aar:.5f}, ca_rmsd: {eval_ca_rmsd:.5f}, bb_rmsd: {eval_bb_rmsd:.5f}, tm_score: {eval_tm_score:.5f}, tm_rmsd: {eval_tm_rmsd:.5f}, ec_accuracy: {eval_ec_accuracy:.5f}')
with open(f'{args.logger_dir}/{args.date}.txt', 'a') as logger:
logger.write(f'Eval epoch: {epoch}, amino_acid_recovery: {eval_aar:.5f}, ca_rmsd: {eval_ca_rmsd:.5f}, bb_rmsd: {eval_bb_rmsd:.5f}, tm_score: {eval_tm_score:.5f}, tm_rmsd: {eval_tm_rmsd:.5f}, ec_accuracy: {eval_ec_accuracy:.5f}\n')
logger.close()
current_pointer += 1
if eval_tm_score > best_tm_score:
best_tm_score = eval_tm_score
best_epoch = epoch
current_pointer = 0
torch.save(
{
"epoch": epoch,
"model_state_dict": model_dp.module.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"best_tm_score": best_tm_score,
},
f'{args.checkpoint_dir}/epoch{epoch}',
)
if torch.cuda.is_available(): torch.cuda.empty_cache()
if current_pointer == args.early_stopping:
break
if not (rank == 0 and local_rank == 0):
dist.barrier()
if (rank == 0 and local_rank == 0):
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
torch.autograd.set_detect_anomaly(True)
ddp_parser = argparse.ArgumentParser()
ddp_parser.add_argument("--local-rank", type=int, default=-1)
args_ddp = ddp_parser.parse_args()
args = Args()
args.local_rank = args_ddp.local_rank
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
os.makedirs(args.logger_dir, exist_ok=True)
os.makedirs(args.ckpt_dir, exist_ok=True)
os.makedirs(args.eval.eval_dir, exist_ok=True)
# uniform
args.flow_ec = True
if args.discrete_flow_type == 'uniform':
args.num_aa_type = 20
args.masked_aa_token_idx = None
if args.flow_msa:
args.msa.num_msa_vocab = 64
args.msa.masked_msa_token_idx = None
if args.flow_ec:
args.ec.num_ec_class = 6
args.ec.masked_ec_token_idx = None
# discrete
elif args.discrete_flow_type == 'masking':
args.num_aa_type = 21
args.masked_aa_token_idx = 20
args.aa_ot = False
if args.flow_msa:
args.msa.num_msa_vocab = 65
args.msa.masked_msa_token_idx = 64
args.msa_ot = False
if args.flow_ec:
args.ec.num_ec_class = 7
args.ec.masked_ec_token_idx = 6
else:
raise ValueError(f'Unknown discrete flow type {args.discrete_flow_type}')
if args.local_rank == 0:
args.date = datetime.today().strftime('%Y-%m-%d-%H-%M-%S')
args.evaluation_dir = os.path.join(args.eval.eval_dir, args.date)
os.makedirs(args.evaluation_dir, exist_ok=True)
args.checkpoint_dir = os.path.join(args.ckpt_dir, args.date)
os.makedirs(args.checkpoint_dir, exist_ok=True)
with open(f'{args.logger_dir}/{args.date}.txt', 'a') as logger:
logger.write(f'{args}\n')
logger.close()
main(args)