-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpreprocess_data.py
367 lines (327 loc) · 13 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# author: Wenyue Hua
import argparse
import json
import math
import random
import csv
from transformers import BertTokenizer
import os
from copy import deepcopy
def compute_length(text_list, word_length):
length = 0
for token in text_list[:-word_length]:
if token != " ":
length += len(token)
return length
def process_raw_aida(raw_dir, part):
full_data = []
raw_path = os.path.join(raw_dir, "aida-yago2-dataset-{}.tsv".format(part))
with open(raw_path, "r") as f:
delimiter = ',' if part == 'train' else '\t'
csvreader = csv.reader(f, delimiter=delimiter)
# '\t' for val/test, ',' for train
quoteCharSeenBefore = False
# whiteSpaceInFront = True
whiteSpaceBehind = True
new_doc = {"doc_id": None, "text": "", "spans": [], "entities": []}
for data in csvreader:
if len(data) > 0:
if data[0].startswith("-DOCSTART-"):
rest = data[0].replace("-DOCSTART- (", "")
doc_id = (
rest[: rest.index(" ")]
.replace("testa", "")
.replace("testb", "")
)
if new_doc["text"]:
full_data.append(new_doc)
new_doc = {
"doc_id": doc_id,
"text": "",
"spans": [],
"entities": [],
}
quoteCharSeenBefore = False
else:
if data[0] != "":
char = data[0].replace("\n", " ").strip()
# char = data[0].strip()
# if we should insert a white space
whiteSpaceInFront = whiteSpaceBehind
whiteSpaceBehind = True
if len(new_doc["text"]) > 0 and len(char) >= 1:
if len(char) == 1:
if char in ["?", "!", ",", ".", ")", "]", "}"]:
whiteSpaceInFront = False
elif char == '"':
if quoteCharSeenBefore:
whiteSpaceInFront = False
if not quoteCharSeenBefore:
whiteSpaceBehind = False
quoteCharSeenBefore = not quoteCharSeenBefore
elif char in ["(", "[", "{"]:
whiteSpaceBehind = False
else:
if not (char[0].isalpha() or char[0].isdigit()):
whiteSpaceInFront = False
else:
whiteSpaceInFront = True
if whiteSpaceInFront:
new_doc["text"] += " "
new_doc["text"] += char
if len(data) > 1:
if data[1] == "B" and data[3] != "--NME--":
word_length = len(data[0])
current_text_length = compute_length(
new_doc["text"], word_length
)
new_doc["spans"].append(
(current_text_length,
len(data[2].replace(" ", "")))
)
new_doc["entities"].append(data[3])
if new_doc["text"]:
full_data.append(new_doc)
return full_data
def load_processed_aida(args, part):
path = os.path.join(args.out_processed_dir, 'aida_%s.json' % part)
with open(path) as f:
res = json.load(f)
return res
def normalize_string(s):
s = s.replace('_', ' ')
return eval(repr(s).replace('\\\\', '\\'))
def process_entities(processed_raw_data, args):
title_map_path = os.path.join(args.title_map_dir, 'title_map.json')
with open(title_map_path) as f:
title_map = json.load(f)
res = []
for d in processed_raw_data:
r = deepcopy(d)
ents = [title_map[normalize_string(e)] if normalize_string(e) in
title_map else normalize_string(
e) for e in d['entities']]
r['entities'] = ents
res.append(r)
return res
def tokenize_original_text(processed_raw_data, tokenizer, part, args):
data = []
for d in processed_raw_data:
orig_text = d["text"]
topic = orig_text.split(' ', 1)[0].replace(',', '').replace("'s", '')
title = orig_text.split('.', 1)[0]
topic = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(topic))
title = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(title))
orig_spans = d["spans"]
text = tokenizer.tokenize(orig_text)
# +1 because of [BOS]
doc_id = d["doc_id"]
spans = [
(char2token(text, span[0]),
char2token(text, span[0] + span[1] - 1) + 1,)
for span in orig_spans
]
entities = d["entities"]
text_ids = tokenizer.convert_tokens_to_ids(text)
content_length = args.instance_length - 2
if len(text_ids) < content_length:
text_ids = [101] + tokenizer.convert_tokens_to_ids(text) + [102]
spans = [(s[0] + 1, s[1] + 1) for s in spans]
data.append(
{
"doc_id": doc_id,
"topic": topic,
"title": title,
"text": text_ids,
"spans": spans,
"entities": entities,
"offset": 0,
}
)
else:
# -2 for [BOS] and [EOS]
for ins_num in range(math.ceil(len(text_ids) / args.stride)):
begin = ins_num * args.stride
end = ins_num * args.stride + content_length
instance_ids = [101] + text_ids[begin:end] + [102]
span_ids = [
spans.index(s) for s in spans if
begin <= s[0] and s[1] <= end
]
# +1 for [BOS]
instance_spans = [
(
spans[x][0] + 1 - begin,
spans[x][1] + 1 - begin,
)
for x in span_ids
]
instance_entities = [entities[x] for x in span_ids]
data.append(
{
"doc_id": doc_id,
"topic": topic,
"title": title,
"text": instance_ids,
"spans": instance_spans,
"entities": instance_entities,
"offset": begin,
}
)
if part == 'train':
data = negative_sampling(args.pos_prop, data)
pos = 0
neg = 0
for d in data:
spans = d["spans"]
if spans:
pos += 1
else:
neg += 1
assert pos / (pos + neg) >= args.pos_prop
return data
# only for train
def negative_sampling(pos_prop, data):
random.seed(10)
pos = 0
neg = 0
for d in data:
spans = d["spans"]
if spans:
pos += 1
else:
neg += 1
sampled_data = []
if pos / (pos + neg) < pos_prop:
neg_need_number = (pos / pos_prop) - pos
neg_sample_rate = neg_need_number / neg
for d in data:
spans = d["spans"]
if spans:
sampled_data.append(d)
else:
# discard
if random.random() > neg_sample_rate:
pass
# retain
else:
sampled_data.append(d)
else:
sampled_data = data
return sampled_data
def char2token(text, index):
char2token_list = []
for i, tok in enumerate(text):
char2token_list += [i] * len(tok.replace("##", ""))
return char2token_list[index]
def get_entity_window(item, tokenizer, max_ent_len):
title = item['wikipedia_title']
text = item['text'][1:] if len(item['text']) > 1 else item['text']
text = ' '.join(text)
max_ent_len -= 2 # CLS, SEP
ENT = '[unused2]'
title_tokens = tokenizer.tokenize(title)
text_tokens = tokenizer.tokenize(text)
window = (title_tokens + [ENT] + text_tokens)[:max_ent_len]
return window
# process kilt knowledge base
def process_kilt_kb(args):
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
fout = open(args.out_kb_path, 'w')
with open(args.raw_kb_path, 'r') as f:
for line in f:
field = {}
item = json.loads(line)
window = get_entity_window(item, tokenizer, args.max_ent_len)
entity_dict = tokenizer.encode_plus(window,
add_special_tokens=True,
max_ent_length=args.max_ent_len,
pad_to_max_ent_length=True,
truncation=True)
field['wikipedia_id'] = item['wikipedia_id']
field['title'] = item['wikipedia_title']
field['text_ids'] = entity_dict['input_ids']
field['text_masks'] = entity_dict['attention_mask']
fout.write('%s\n' % json.dumps(field))
fout.close()
def save_aida(data, args, part):
out_path = os.path.join(args.out_aida_dir, 'tokenized_aida_%s.json' % part)
with open(out_path, 'w') as f:
json.dump(data, f)
def save_aida_processed(data, args, part):
out_path = os.path.join(args.out_processed_dir, 'aida_%s.json' % part)
with open(out_path, 'w') as f:
json.dump(data, f)
def main(args):
# process raw aida
aida_train = process_raw_aida(args.raw_dir, 'train')
aida_val = process_raw_aida(args.raw_dir, 'val')
aida_test = process_raw_aida(args.raw_dir, 'test')
aida_train = process_entities(aida_train, args)
aida_val = process_entities(aida_val, args)
aida_test = process_entities(aida_test, args)
if args.save_processed:
save_aida_processed(aida_train, args, 'train')
save_aida_processed(aida_val, args, 'val')
save_aida_processed(aida_test, args, 'test')
# aida_train = load_processed_aida(args, 'train')
# aida_val = load_processed_aida(args, 'val')
# aida_test = load_processed_aida(args, 'test')
# tokenize aida
print('tokenize aida...')
tokenizer = BertTokenizer.from_pretrained("bert-large-uncased")
tokenized_train = tokenize_original_text(aida_train, tokenizer, 'train',
args)
print(len(tokenized_train))
tokenized_val = tokenize_original_text(aida_val, tokenizer, 'val', args)
print(len(tokenized_val))
tokenized_test = tokenize_original_text(aida_test, tokenizer, 'test', args)
print(len(tokenized_test))
# save aida data
print('save tokenized aida ...')
save_aida(tokenized_train, args, 'train')
save_aida(tokenized_val, args, 'val')
save_aida(tokenized_test, args, 'test')
print('process kilt kb ...')
process_kilt_kb(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--raw_dir', type=str,
help='raw aida data directory')
parser.add_argument('--title_map_dir', type=str,
help='title map directory')
parser.add_argument('--save_processed', action='store_true',
help='save processed raw aida data?')
parser.add_argument('--out_aida_dir', type=str,
help='output aida data directory')
parser.add_argument('--out_processed_dir', type=str,
help='output processed raw aida data directory')
parser.add_argument('--raw_kb_path', type=str,
help='raw kilt kb path')
parser.add_argument('--out_kb_path', type=str,
help='output kb path')
parser.add_argument('--max_ent_len', type=int,
default=128,
help='maximum length of entity input')
# twice the number of passages
parser.add_argument(
"--instance_length", type=int, default=32,
help="the length of each instance"
)
parser.add_argument(
"--stride",
type=int,
default=16,
help="length of stride when chunking instances",
)
# in val: 1296 pos, 113 neg
# in test: 1177 pos, 134 neg
# in train: 5062 pos, 660 neg
parser.add_argument(
"--pos_prop",
type=float,
default=1,
help="number of passages with entities v.s. total number of passages",
)
args = parser.parse_args()
main(args)