forked from CubiCasa/CubiCasa5k
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
417 lines (367 loc) · 20 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import matplotlib
matplotlib.use('pdf')
import sys
import os
import logging
import json
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pandas as pd
from datetime import datetime
from floortrans.loaders.augmentations import (RandomCropToSizeTorch,
ResizePaddedTorch,
Compose,
DictToTensor,
ColorJitterTorch,
RandomRotations)
from torchvision.transforms import RandomChoice
from torch.utils import data
from torch.nn.functional import softmax
from tqdm import tqdm
from floortrans.loaders import FloorplanSVG
from floortrans.models import get_model
from floortrans.losses import UncertaintyLoss
from floortrans.metrics import get_px_acc, runningScore
from tensorboardX import SummaryWriter
from torch.optim.lr_scheduler import ReduceLROnPlateau
import matplotlib.pyplot as plt
def train(args, log_dir, writer, logger):
with open(log_dir+'/args.json', 'w') as out:
json.dump(vars(args), out, indent=4)
# Augmentation setup
if args.scale:
aug = Compose([RandomChoice([RandomCropToSizeTorch(data_format='dict', size=(args.image_size, args.image_size)),
ResizePaddedTorch((0, 0), data_format='dict', size=(args.image_size, args.image_size))]),
RandomRotations(format='cubi'),
DictToTensor(),
ColorJitterTorch()])
else:
aug = Compose([RandomCropToSizeTorch(data_format='dict', size=(args.image_size, args.image_size)),
RandomRotations(format='cubi'),
DictToTensor(),
ColorJitterTorch()])
# Setup Dataloader
writer.add_text('parameters', str(vars(args)))
logging.info('Loading data...')
train_set = FloorplanSVG(args.data_path, 'train.txt', format='lmdb',
augmentations=aug)
val_set = FloorplanSVG(args.data_path, 'val.txt', format='lmdb',
augmentations=DictToTensor())
if args.debug:
num_workers = 0
print("In debug mode.")
logger.info('In debug mode.')
else:
num_workers = 8
trainloader = data.DataLoader(train_set, batch_size=args.batch_size,
num_workers=num_workers, shuffle=True, pin_memory=True)
valloader = data.DataLoader(val_set, batch_size=1,
num_workers=num_workers, pin_memory=True)
# Setup Model
logging.info('Loading model...')
input_slice = [21, 12, 11]
if args.arch == 'hg_furukawa_original':
model = get_model(args.arch, 51)
criterion = UncertaintyLoss(input_slice=input_slice)
if args.furukawa_weights:
logger.info("Loading furukawa model weights from checkpoint '{}'".format(args.furukawa_weights))
checkpoint = torch.load(args.furukawa_weights)
model.load_state_dict(checkpoint['model_state'])
criterion.load_state_dict(checkpoint['criterion_state'])
model.conv4_ = torch.nn.Conv2d(256, args.n_classes, bias=True, kernel_size=1)
model.upsample = torch.nn.ConvTranspose2d(args.n_classes, args.n_classes, kernel_size=4, stride=4)
for m in [model.conv4_, model.upsample]:
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
nn.init.constant_(m.bias, 0)
else:
model = get_model(args.arch, args.n_classes)
criterion = UncertaintyLoss(input_slice=input_slice)
model.cuda()
# Drawing graph for TensorBoard
dummy = torch.zeros((2, 3, args.image_size, args.image_size)).cuda()
model(dummy)
writer.add_graph(model, dummy)
params = [{'params': model.parameters(), 'lr': args.l_rate},
{'params': criterion.parameters(), 'lr': args.l_rate}]
if args.optimizer == 'adam-patience':
optimizer = torch.optim.Adam(params, eps=1e-8, betas=(0.9, 0.999))
scheduler = ReduceLROnPlateau(optimizer, 'min', patience=args.patience, factor=0.5)
elif args.optimizer == 'adam-patience-previous-best':
optimizer = torch.optim.Adam(params, eps=1e-8, betas=(0.9, 0.999))
elif args.optimizer == 'sgd':
def lr_drop(epoch):
return (1 - epoch/args.n_epoch)**0.9
optimizer = torch.optim.SGD(params, momentum=0.9, weight_decay=10**-4, nesterov=True)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_drop)
elif args.optimizer == 'adam-scheduler':
def lr_drop(epoch):
return 0.5 ** np.floor(epoch / args.l_rate_drop)
optimizer = torch.optim.Adam(params, eps=1e-8, betas=(0.9, 0.999))
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_drop)
first_best = True
best_loss = np.inf
best_loss_var = np.inf
best_train_loss = np.inf
best_acc = 0
start_epoch = 0
running_metrics_room_val = runningScore(input_slice[1])
running_metrics_icon_val = runningScore(input_slice[2])
best_val_loss_variance = np.inf
no_improvement = 0
if args.weights is not None:
if os.path.exists(args.weights):
logger.info("Loading model and optimizer from checkpoint '{}'".format(args.weights))
checkpoint = torch.load(args.weights)
model.load_state_dict(checkpoint['model_state'])
criterion.load_state_dict(checkpoint['criterion_state'])
if not args.new_hyperparams:
optimizer.load_state_dict(checkpoint['optimizer_state'])
logger.info("Using old optimizer state.")
logger.info("Loaded checkpoint '{}' (epoch {})".format(args.weights, checkpoint['epoch']))
else:
logger.info("No checkpoint found at '{}'".format(args.weights))
for epoch in range(start_epoch, args.n_epoch):
model.train()
lossess = []
losses = pd.DataFrame()
variances = pd.DataFrame()
ss = pd.DataFrame()
# Training
for i, samples in tqdm(enumerate(trainloader), total=len(trainloader),
ncols=80, leave=False):
images = samples['image'].cuda(non_blocking=True)
labels = samples['label'].cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs, labels)
lossess.append(loss.item())
losses = losses.append(criterion.get_loss(), ignore_index=True)
variances = variances.append(criterion.get_var(), ignore_index=True)
ss = ss.append(criterion.get_s(), ignore_index=True)
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_loss = np.mean(lossess)
avg_loss = np.inf
loss = losses.mean()
variance = variances.mean()
s = ss.mean()
logging.info("Epoch [%d/%d] Loss: %.4f" % (epoch+1, args.n_epoch, avg_loss))
writer.add_scalars('training/loss', loss, global_step=1+epoch)
writer.add_scalars('training/variance', variance, global_step=1+epoch)
writer.add_scalars('training/s', s, global_step=1+epoch)
current_lr = {'base': optimizer.param_groups[0]['lr'],
'var': optimizer.param_groups[1]['lr']}
writer.add_scalars('training/lr', current_lr, global_step=1+epoch)
# Validation
model.eval()
val_losses = pd.DataFrame()
val_variances = pd.DataFrame()
val_ss = pd.DataFrame()
px_rooms = 0
px_icons = 0
total_px = 0
for i_val, samples_val in tqdm(enumerate(valloader), total=len(valloader), ncols=80, leave=False):
with torch.no_grad():
images_val = samples_val['image'].cuda(non_blocking=True)
labels_val = samples_val['label'].cuda(non_blocking=True)
outputs = model(images_val)
labels_val = F.interpolate(labels_val, size=outputs.shape[2:], mode='bilinear', align_corners=False)
loss = criterion(outputs, labels_val)
room_pred = outputs[0, input_slice[0]:input_slice[0]+input_slice[1]].argmax(0).data.cpu().numpy()
room_gt = labels_val[0, input_slice[0]].data.cpu().numpy()
running_metrics_room_val.update(room_gt, room_pred)
icon_pred = outputs[0, input_slice[0]+input_slice[1]:].argmax(0).data.cpu().numpy()
icon_gt = labels_val[0, input_slice[0]+1].data.cpu().numpy()
running_metrics_icon_val.update(icon_gt, icon_pred)
total_px += outputs[0, 0].numel()
pr, pi = get_px_acc(outputs[0], labels_val[0], input_slice, 0)
px_rooms += float(pr)
px_icons += float(pi)
val_losses = val_losses.append(criterion.get_loss(), ignore_index=True)
val_variances = val_variances.append(criterion.get_var(), ignore_index=True)
val_ss = val_ss.append(criterion.get_s(), ignore_index=True)
val_loss = val_losses.mean()
# print("CNN done", val_mid-val_start)
val_variance = val_variances.mean()
logging.info("val_loss: "+str(val_loss))
writer.add_scalars('validation loss', val_loss, global_step=1+epoch)
# print(val_variance)
writer.add_scalars('validation variance', val_variance, global_step=1+epoch)
if args.optimizer == 'adam-patience':
scheduler.step(val_loss['total loss with variance'])
elif args.optimizer == 'adam-patience-previous-best':
if best_val_loss_variance > val_loss['total loss with variance']:
best_val_loss_variance = val_loss['total loss with variance']
no_improvement = 0
else:
no_improvement += 1
if no_improvement >= args.patience:
logger.info("No no_improvement for " + str(no_improvement) + " loading last best model and reducing learning rate.")
checkpoint = torch.load(log_dir+"/model_best_val_loss_var.pkl")
model.load_state_dict(checkpoint['model_state'])
for i, p in enumerate(optimizer.param_groups):
optimizer.param_groups[i]['lr'] = p['lr'] * 0.1
no_improvement = 0
elif args.optimizer == 'sgd' or 'adam-scheduler':
scheduler.step(epoch+1)
val_variance = val_variances.mean()
val_s = val_ss.mean()
logger.info("val_loss: "+str(val_loss))
room_score, room_class_iou = running_metrics_room_val.get_scores()
writer.add_scalars('validation/room/general', room_score, global_step=1+epoch)
writer.add_scalars('validation/room/IoU', room_class_iou['Class IoU'], global_step=1+epoch)
writer.add_scalars('validation/room/Acc', room_class_iou['Class Acc'], global_step=1+epoch)
running_metrics_room_val.reset()
icon_score, icon_class_iou = running_metrics_icon_val.get_scores()
writer.add_scalars('validation/icon/general', icon_score, global_step=1+epoch)
writer.add_scalars('validation/icon/IoU', icon_class_iou['Class IoU'], global_step=1+epoch)
writer.add_scalars('validation/icon/Acc', icon_class_iou['Class Acc'], global_step=1+epoch)
running_metrics_icon_val.reset()
writer.add_scalars('validation/loss', val_loss, global_step=1+epoch)
writer.add_scalars('validation/variance', val_variance, global_step=1+epoch)
writer.add_scalars('validation/s', val_s, global_step=1+epoch)
if val_loss['total loss with variance'] < best_loss_var:
best_loss_var = val_loss['total loss with variance']
logger.info("Best validation loss with variance found saving model...")
state = {'epoch': epoch+1,
'model_state': model.state_dict(),
'criterion_state': criterion.state_dict(),
'optimizer_state': optimizer.state_dict(),
'best_loss': best_loss}
torch.save(state, log_dir+"/model_best_val_loss_var.pkl")
# Making example prediction images to TensorBoard
if args.plot_samples:
for i, samples_val in enumerate(valloader):
with torch.no_grad():
if i == 4:
break
images_val = samples_val['image'].cuda(non_blocking=True)
labels_val = samples_val['label'].cuda(non_blocking=True)
if first_best:
# save image and label
writer.add_image("Image "+str(i), images_val[0])
# add_labels_tensorboard(writer, labels_val)
for j, l in enumerate(labels_val.squeeze().cpu().data.numpy()):
fig = plt.figure(figsize=(18, 12))
plot = fig.add_subplot(111)
if j < 21:
cax = plot.imshow(l, vmin=0, vmax=1)
else:
cax = plot.imshow(l, vmin=0, vmax=19, cmap=plt.cm.tab20)
fig.colorbar(cax)
writer.add_figure("Image "+str(i)+" label/Channel "+str(j), fig)
outputs = model(images_val)
# add_predictions_tensorboard(writer, outputs, epoch)
pred_arr = torch.split(outputs, input_slice, 1)
heatmap_pred, rooms_pred, icons_pred = pred_arr
rooms_pred = softmax(rooms_pred, 1).cpu().data.numpy()
icons_pred = softmax(icons_pred, 1).cpu().data.numpy()
label = "Image "+str(i)+" prediction/Channel "
for j, l in enumerate(np.squeeze(heatmap_pred)):
fig = plt.figure(figsize=(18, 12))
plot = fig.add_subplot(111)
cax = plot.imshow(l, vmin=0, vmax=1)
fig.colorbar(cax)
writer.add_figure(label+str(j), fig, global_step=1+epoch)
fig = plt.figure(figsize=(18, 12))
plot = fig.add_subplot(111)
cax = plot.imshow(np.argmax(np.squeeze(rooms_pred), axis=0), vmin=0, vmax=19, cmap=plt.cm.tab20)
fig.colorbar(cax)
writer.add_figure(label+str(j+1), fig, global_step=1+epoch)
fig = plt.figure(figsize=(18, 12))
plot = fig.add_subplot(111)
cax = plot.imshow(np.argmax(np.squeeze(icons_pred), axis=0), vmin=0, vmax=19, cmap=plt.cm.tab20)
fig.colorbar(cax)
writer.add_figure(label+str(j+2), fig, global_step=1+epoch)
first_best = False
if val_loss['total loss'] < best_loss:
best_loss = val_loss['total loss']
logger.info("Best validation loss found saving model...")
state = {'epoch': epoch+1,
'model_state': model.state_dict(),
'criterion_state': criterion.state_dict(),
'optimizer_state': optimizer.state_dict(),
'best_loss': best_loss}
torch.save(state, log_dir+"/model_best_val_loss.pkl")
px_acc = room_score["Mean Acc"] + icon_score["Mean Acc"]
if px_acc > best_acc:
best_acc = px_acc
logger.info("Best validation pixel accuracy found saving model...")
state = {'epoch': epoch+1,
'model_state': model.state_dict(),
'criterion_state': criterion.state_dict(),
'optimizer_state': optimizer.state_dict()}
torch.save(state, log_dir+"/model_best_val_acc.pkl")
if avg_loss < best_train_loss:
best_train_loss = avg_loss
logger.info("Best training loss with variance...")
state = {'epoch': epoch+1,
'model_state': model.state_dict(),
'criterion_state': criterion.state_dict(),
'optimizer_state': optimizer.state_dict()}
torch.save(state, log_dir+"/model_best_train_loss_var.pkl")
logger.info("Last epoch done saving final model...")
state = {'epoch': epoch+1,
'model_state': model.state_dict(),
'criterion_state': criterion.state_dict(),
'optimizer_state': optimizer.state_dict()}
torch.save(state, log_dir+"/model_last_epoch.pkl")
if __name__ == '__main__':
time_stamp = datetime.now().strftime("%Y-%m-%d-%H:%M:%S")
parser = argparse.ArgumentParser(description='Hyperparameters')
parser.add_argument('--arch', nargs='?', type=str, default='hg_furukawa_original',
help='Architecture to use.')
parser.add_argument('--optimizer', nargs='?', type=str, default='adam-patience-previous-best',
help='Optimizer to use [\'adam, sgd\']')
parser.add_argument('--data-path', nargs='?', type=str, default='data/cubicasa5k/',
help='Path to data directory')
parser.add_argument('--n-classes', nargs='?', type=int, default=44,
help='# of the epochs')
parser.add_argument('--n-epoch', nargs='?', type=int, default=1000,
help='# of the epochs')
parser.add_argument('--batch-size', nargs='?', type=int, default=26,
help='Batch Size')
parser.add_argument('--image-size', nargs='?', type=int, default=256,
help='Image size in training')
parser.add_argument('--l-rate', nargs='?', type=float, default=1e-3,
help='Learning Rate')
parser.add_argument('--l-rate-var', nargs='?', type=float, default=1e-3,
help='Learning Rate for Variance')
parser.add_argument('--l-rate-drop', nargs='?', type=float, default=200,
help='Learning rate drop after how many epochs?')
parser.add_argument('--patience', nargs='?', type=int, default=10,
help='Learning rate drop patience')
parser.add_argument('--feature-scale', nargs='?', type=int, default=1,
help='Divider for # of features to use')
parser.add_argument('--weights', nargs='?', type=str, default=None,
help='Path to previously trained model weights file .pkl')
parser.add_argument('--furukawa-weights', nargs='?', type=str, default=None,
help='Path to previously trained furukawa model weights file .pkl')
parser.add_argument('--new-hyperparams', nargs='?', type=bool,
default=False, const=True,
help='Continue training with new hyperparameters')
parser.add_argument('--log-path', nargs='?', type=str, default='runs_cubi/',
help='Path to log directory')
parser.add_argument('--debug', nargs='?', type=bool,
default=False, const=True,
help='Continue training with new hyperparameters')
parser.add_argument('--plot-samples', nargs='?', type=bool,
default=False, const=True,
help='Plot floorplan segmentations to Tensorboard.')
parser.add_argument('--scale', nargs='?', type=bool,
default=False, const=True,
help='Rescale to 256x256 augmentation.')
args = parser.parse_args()
log_dir = args.log_path + '/' + time_stamp + '/'
writer = SummaryWriter(log_dir)
logger = logging.getLogger('train')
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(log_dir+'/train.log')
fh.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
logger.addHandler(fh)
train(args, log_dir, writer, logger)