-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlidR_processingR.R
47 lines (39 loc) · 1.46 KB
/
lidR_processingR.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Processing : Generate the the DTM, Normalize the lidar data, Filter the point clouds from the first return, remove the outlines, segmentation of trees and Buildings
# version 1.0.0 : testing
# Author : Walid Ghariani
library(lidR)
library(rLiDAR)
library(rasterVis)
library(ggspatial)
library(dplyr)
library(ggplot2)
# call lidR functions for Visualisations
source("lidR_functions.R")
############# Automate the whole prpocess
automated_Seg(input = "./input_lidar/merged_lidar.laz",dtm = "dtm_lidR.tif", ndsm = "nDSM_lidR.tif")
########### 3Dviz with rLiDAR
rLAS <- rLiDAR::readLAS("./Output_lidar/lidar_filtered.las",short=TRUE)
summary(rLAS)
str(rLAS)
df_rlas <- as.data.frame(rLAS)
df_rlas %>%
ggplot(aes(Z))+
geom_histogram()
# Define the color ramp
# color ramp
myColorRamp <- function(colors, values) {
v <- (values - min(values))/diff(range(values))
x <- colorRamp(colors)(v)
rgb(x[,1], x[,2], x[,3], maxColorValue = 255)
}
# Color by height
col <- myColorRamp(c("blue","green","yellow","red"),rLAS[,3])
# plot 2D
plot(rLAS[,1], rLAS[,2], col=col, xlab="UTM.Easting", ylab="UTM.Northing", main="Color by height")
# plot 3D
library("rgl")
points3d(rLAS[,1:3], col=col, axes=FALSE, xlab="", ylab="", zlab="")
axes3d(c("x+", "y-", "z-")) # axes
grid3d(side=c('x+', 'y-', 'z'), col="gray") # grid
title3d(xlab = "UTM.Easting", ylab = "UTM.Northing",zlab = "Height(m)", col="red") # title
planes3d(0, 0, -1, 0.001, col="gray",alpha=0.7) # terrain