-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patharl_env.py
600 lines (481 loc) · 15.6 KB
/
arl_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#!/usr/bin/env python
# //============================================================================
# /*
# Software License Agreement (BSD License)
# Copyright (c) 2019, AMBF
# (www.aimlab.wpi.edu)
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of authors nor the names of its contributors may
# be used to endorse or promote products derived from this software
# without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# \author <http://aimlab.wpi.edu>
# \author Dhruv Kool Rajamani, Vignesh Manoj Varier, and Adnan Munawar
# \version 1.0.0
# */
# //============================================================================
from typing import List, Set, Tuple, Dict, Any, Type
from ambf_client import Client
import ambf_client
from gym import spaces
import numpy as np
import copy
import time
import gym
from gym.utils import seeding
from ambf_world import World
from ambf_object import Object
import sys
from abc import ABC, abstractmethod, ABCMeta
class Observation:
def __init__(
self,
state: Any or np.ndarray or List[float] or Dict,
dist: int = 0,
reward: float = 0.0,
prev_reward: float = 0.0,
cur_reward: float = 0.0,
is_done: bool = False,
info: Dict = {},
sim_step_no: int = 0
) -> None:
self.state = state
self.dist = dist
self.reward = reward
self.prev_reward = prev_reward
self.cur_reward = cur_reward
self.is_done = is_done
self.info = info
self.sim_step_no = sim_step_no
return
def cur_observation(self) -> Tuple[Any or np.ndarray, float, bool, Dict]:
return self.state, self.reward, self.is_done, self.info
class ClientHandleError(BaseException):
def __init__(self, *args: object) -> None:
super().__init__(*args)
class Action:
def __init__(
self,
n_actions: int,
action_space_limit: float,
action_lims_low: List[float] = None,
action_lims_high: List[float] = None
) -> None:
self.n_actions = n_actions
self.action = [0.0 for i in range(n_actions)]
self.action_space_limit = action_space_limit
if action_lims_low is None:
self.action_lims_low = -action_space_limit * np.ones(self.n_actions)
else:
self.action_lims_low = action_lims_low
if action_lims_high is None:
self.action_lims_high = action_space_limit * np.ones(self.n_actions)
else:
self.action_lims_high = action_lims_high
self.action_space = spaces.Space()
return
def check_if_valid_action(self):
"""Check if the length of the action matches the defined action in the action space
Raises
------
TypeError
If the length of action does not match the number of actions defined
"""
assert len(self.action) == self.n_actions, TypeError("Incorrect length of actions provided!")
# Clips the action value between the upper and lower limits
np.clip(self.action, self.action_lims_low, self.action_lims_high, out=self.action)
return
def apply(self, state: np.ndarray, out: np.ndarray = None) -> np.ndarray:
"""Apply the action to the given state.
This function can be overrided if the application of the action to state corresponds
to a complex relationship to obtain the next state.
Parameter
---------
state : np.ndarray
The state (s) to which the action should be added
out : np.ndarray, optional
The output parameter, passed by reference if the return argument is not used
Raises
------
Exception
"""
if out is None:
result = np.add(state, self.action)
else:
result = np.add(state, self.action, out=out)
return result
class Goal:
def __init__(
self,
goal_position_range: float,
goal_error_margin: float,
goal: Any or np.ndarray
) -> None:
self.goal_position_range = goal_position_range
self.goal_error_margin = goal_error_margin
self.goal = goal
return
def _sample_goal(self) -> Any or np.ndarray:
return self.goal
class ARLEnv(gym.Env, metaclass=ABCMeta):
"""Base class for the ARLEnv
This class should not be instantiated on its own. It does not contain the
desired RL Algorithm or the Robot. This should remain an abstract class and
should be wrapped by at least an algorithmic and robot environment wrapper.
An example of this can be PSM_cartesian_env_ddpg(ARLEnv).
Attributes
----------
Methods
-------
skip_skipped_sim_steps(num)
Define number of steps to skip if step-throttling is enabled.
set_throttling_enable(check):
Set the step-throttling Boolean.
"""
def __init__(
self,
enable_step_throttling: bool,
n_skip_steps: int,
env_name: str = "arl_env"
) -> None:
"""Initialize the abstract class which handles all AMBF related interactions
Parameters
----------
enable_step_throttling : bool
Flag to enable throttling of the simulator
n_skip_steps : int
Number of steps to skip after an update step
env_name : str
Name of the environment to train
"""
super(ARLEnv, self).__init__()
# Set the environment name
self._env_name = env_name
self._client_name = self._env_name + '_client'
# Set environment and task parameters
self._n_skip_steps = n_skip_steps
self._enable_step_throttling = enable_step_throttling
# Initialize sim steps
self._skipped_sim_steps = 0
self._prev_sim_step = 0
self._count_for_print = 0
# AMBF Sim Environment Declarations
self._obj_handle = None # Object
self._world_handle = None # World
self._ambf_client = None # Client(client_name=self._client_name)
# Initialize the ambf client
self.ambf_client = Client(client_name=self._client_name)
# Set default Observation, Goal, and Action
self._goal = Goal(0.0, 0.0, None)
self._obs = Observation(None)
self._action = Action(0, 0.0)
# Set action space and observation space
self.action_space = self.action.action_space
self.observation_space = spaces.Space()
# Sleep to allow the handle to connect to the AMBF server
time.sleep(1)
# Random seed the environment
self.seed(5)
return
# Properties
@property
def env_name(self) -> str:
"""Return the name of the environment
"""
return self._env_name
@env_name.setter
def env_name(self, value: str):
"""Set the environment name
"""
self._env_name = value
@property
def client_name(self) -> str:
"""Return the AMBF Client Name
"""
return self._client_name
@client_name.setter
def client_name(self, value: str):
"""Sets the AMBF Client Name
"""
self._client_name = value
return
@property
def n_skip_steps(self) -> int:
"""Return number of steps to skip.
TODO: Provide reference for step-throttling
"""
return self._n_skip_steps
@n_skip_steps.setter
def n_skip_steps(self, value: int):
"""Define number of steps to skip if step-throttling is enabled.
"""
self._n_skip_steps = value
self._world_handle.set_num_step_skips(value)
return
@property
def enable_step_throttling(self) -> bool:
"""Return the step-throttling state
TODO: Provide reference for step-throttling
"""
return self._enable_step_throttling
@enable_step_throttling.setter
def enable_step_throttling(self, value: bool):
"""Set the step-throttling state
"""
self._enable_step_throttling = value
self._world_handle.enable_throttling(self._enable_step_throttling)
return
@property
def skipped_sim_steps(self) -> int:
"""Return the simulation steps skipped
"""
skipped_steps = 0
if self.enable_step_throttling:
while skipped_steps < self.n_skip_steps:
skipped_steps = self.obj_handle.get_sim_step() - self.prev_sim_step
time.sleep(1e-5)
self.prev_sim_step = self.obj_handle.get_sim_step()
if skipped_steps > self.n_skip_steps:
print(
'WARN: Skipped {} steps, Default skip limit {} Steps'.format(
skipped_steps,
self.n_skip_steps
)
)
else:
skipped_steps = self.obj_handle.get_sim_step() - self.prev_sim_step
self.prev_sim_step = self.obj_handle.get_sim_step()
self._skipped_sim_steps = skipped_steps
return self._skipped_sim_steps
@property
def prev_sim_step(self) -> int:
"""Return the previous simulation step number
"""
return self._prev_sim_step
@prev_sim_step.setter
def prev_sim_step(self, value: int):
"""Set the previous simulation step number
"""
self._prev_sim_step = value
return
@property
def count_for_print(self) -> int:
"""Return the number of counts to print
"""
return self._count_for_print
@count_for_print.setter
def count_for_print(self, value: int):
"""Set the number of counts to print
"""
self._count_for_print = value
return
@property
def obj_handle(self) -> Object:
"""Return the AMBF Object Handle
"""
return self._obj_handle
@obj_handle.setter
def obj_handle(self, value: Object):
"""Set the AMBF Object Handle
"""
self._obj_handle = value
return
@property
def world_handle(self) -> World:
"""Return the AMBF World Handle
"""
return self._world_handle
@world_handle.setter
def world_handle(self, value: World):
"""Set the AMBF World Handle
"""
self._world_handle = value
return
@property
def ambf_client(self) -> Client:
"""Return the AMBF Client
"""
return self._ambf_client
@ambf_client.setter
def ambf_client(self, value: Client):
"""Set the AMBF Client
"""
self._ambf_client = value
self._ambf_client.connect()
time.sleep(1)
self._ambf_client.create_objs_from_rostopics()
return
@property
def goal(self) -> Goal:
"""Return the goal object
"""
return self._goal
@goal.setter
def goal(self, value: Goal):
"""Set the goal object
"""
self._goal = value
return
@property
def obs(self) -> Observation:
"""Return the Observation object
"""
return self._obs
@obs.setter
def obs(self, value: Observation):
"""Set the Observation object
"""
self._obs = value
return
@property
def action(self) -> Action:
"""Return the action object
"""
return self._action
@action.setter
def action(self, value: Action):
"""Set the action object
"""
self._action = value
return
@property
def action_space(self) -> spaces.Space:
"""Return the action_space
"""
return self._action_space
@action_space.setter
def action_space(self, value: spaces.Space):
"""Set the action_space
"""
self._action_space = value
return
@property
def observation_space(self) -> spaces.Space:
"""Return the observation_space
"""
return self._observation_space
@observation_space.setter
def observation_space(self, value: spaces.Space):
"""Set the observation_space
"""
self._observation_space = value
return
# Gym requirements
def make(self, robot_root_link: str):
"""Creates an object handle of the robot and world in AMBF
Parameters
----------
robot_root_link : string
Name of the root link of the robot.
eg. for the dVRK PSM: robot_root_link = 'psm/baselink'
Raises
------
ClientHandleError
If obj handle or world handle are None, then a ClientHandleError is
raised.
"""
self.world_handle = self.ambf_client.get_world_handle()
if self.world_handle is None:
raise ClientHandleError("World handle not found, please make sure AMBF is running")
self.obj_handle = self.ambf_client.get_obj_handle(robot_root_link)
if self.obj_handle is None:
raise ClientHandleError("Object handle not found, please make sure robot is loaded in AMBF")
time.sleep(2)
self.world_handle.enable_throttling(self.enable_step_throttling)
self.world_handle.set_num_step_skips(self.n_skip_steps)
# Verify obj_handle
if self.obj_handle.get_num_joints() == 0:
raise ClientHandleError(
"Object handle returned {} objects, please make sure robot is loaded in AMBF".format(
self.obj_handle.get_num_joints()
)
)
return
def seed(self, seed: int) -> List[int]:
"""Randomize the environment
"""
self.np_random, seed = seeding.np_random(seed)
return [seed]
@abstractmethod
def reset(self) -> np.ndarray or List[float] or Dict:
"""Reset the robot environment
Raises
------
NotImplementedError
If function is not overridden, a Not Implemented error is raised if the
reset function from the base class is called.
"""
raise NotImplementedError("Abstract method reset needs to be overridden")
return Observation(None)
def render(self, mode):
return
@abstractmethod
def step(
self,
action #: Action
) -> Tuple[List[Any] or np.ndarray,
float,
bool,
Dict[str,
bool]]:
"""Performs the update step for the algorithm and dynamics
"""
return [], 0.0, False, {'': False}
@abstractmethod
def compute_reward(self, reached_goal: Goal, desired_goal: Goal, info: Dict[str, bool]) -> float:
"""Function to compute reward received by the agent
"""
return 0.0
@abstractmethod
def _sample_goal(self, observation: Observation) -> Goal:
"""Function to samples new goal positions and ensures its within the workspace of PSM
"""
return Goal(0.0, 0.0, None)
def _check_if_done(self) -> bool:
"""Function to check if the episode was successful
"""
if abs(self.obs.dist) < self.goal.goal_error_margin:
return True
else:
return False
# @abstractmethod
def _update_info(self):
"""Can be used to Provide information for debugging purpose
TODO: Should this function be made abstract?
"""
info = {'is_success': self._is_success()}
return info
# @abstractmethod
def _is_success(self):
"""Function to check if the robot reached the desired goal within a predefined error margin
TODO: Should this function be made abstract?
"""
return self._check_if_done()
@abstractmethod
def send_cmd(self, cmd: np.ndarray or List[float]):
"""Send the command to the robot in the AMBF Simulation.
"""
return
if __name__ == '__main__':
print(sys.path)