-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path__init__.py
225 lines (174 loc) · 7.76 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# get correct path for datafiles when called from another directory
from builtins import filter
from builtins import map
from builtins import range
from builtins import object
from os import path
module_directory = path.abspath(path.dirname(__file__))
data_directory = path.join(module_directory, 'data')
import itertools
from fractions import gcd
from operator import mul as multiply
# This doesn't work anymore ... Ed to fix
# from smact import data_loader
import data_loader #hope this works
class Element(object):
"""Collection of standard elemental properties for given element.
Data is drawn from "data/element.txt", part of the Open Babel
package.
Attributes:
Element.symbol (string) : Elemental symbol used to retrieve data
Element.name (string) : Full name of element
Element.number (int) : Proton number of element
Element.SSE (float) : Solid State Energy
Element.oxidation_states (list) : Default list of allowed oxidation states for use in SMACT
Element.HHI_r (float) : Hirfindahl-Hirschman Index for elemental reserves
Raises:
NameError: Element not found in element.txt
Warning: Element not found in Eigenvalues.csv
"""
def __init__(self, symbol):
"""Initialise Element class
Args:
symbol (str): Chemical element symbol (e.g. 'Fe')
"""
#Ah ok so there is no lookup_element_data function in data_loader
dataset = data_loader.lookup_element_data(symbol, copy=False)
if dataset == None:
raise NameError("Elemental data for {0} not found.".format(symbol))
# Set coordination-environment data from the Shannon-radius data.
# As above, it is safe to use copy = False with this Get* function.
HHI_scores = data_loader.lookup_element_hhis(symbol)
if HHI_scores == None:
HHI_scores = (None, None)
sse_data = data_loader.lookup_element_sse_data(symbol)
if sse_data:
sse = sse_data['SolidStateEnergy']
else:
sse = None
for attribute, value in (
('HHI_r', HHI_scores[1]),
('name', dataset['Name']),
('number', dataset['Z']),
('oxidation_states',
data_loader.lookup_element_oxidation_states(symbol)),
('SSE', sse),
('symbol', symbol)
):
setattr(self, attribute, value)
def neutral_ratios_iter(oxidations, stoichs=False, threshold=5):
"""
Iterator for charge-neutral stoichiometries
Given a list of oxidation states of arbitrary length, yield ratios in which
these form a charge-neutral compound. Stoichiometries may be provided as a
set of legal stoichiometries per site (e.g. a known family of compounds);
otherwise all unique ratios are tried up to a threshold coefficient.
Args:
oxidations : list of integers
stoichs : stoichiometric ratios for each site (if provided)
threshold : single threshold to go up to if stoichs are not provided
Yields:
tuple: ratio that gives neutrality
"""
if not stoichs:
stoichs = [list(range(1,threshold+1))] * len(oxidations)
print("Stoichs: ", stoichs)
print("Stoichs *: ", *stoichs)
# First filter: remove combinations which have a common denominator
# greater than 1 (i.e. Use simplest form of each set of ratios)
# Second filter: return only charge-neutral combinations
print("Oxidations: ",oxidations)
return filter(
#lambda is a way of creating anon functions - essenstial apply arguments to the expression after :
lambda x: _isneutral(oxidations, x) and _gcd_recursive(*x) == 1,
# Generator: enumerate all combinations of stoichiometry
itertools.product(*stoichs)
)
def neutral_ratios(oxidations, stoichs=False, threshold=5):
"""
Get a list of charge-neutral compounds
Given a list of oxidation states of arbitrary length, yield ratios in which
these form a charge-neutral compound. Stoichiometries may be provided as a
set of legal stoichiometries per site (e.g. a known family of compounds);
otherwise all unique ratios are tried up to a threshold coefficient.
Given a list of oxidation states of arbitrary length it searches for
neutral ratios in a given ratio of sites (stoichs) or up to a given
threshold.
Args:
oxidations (list of ints): Oxidation state of each site
stoichs (list of positive ints): A selection of valid stoichiometric
ratios for each site
threshold (int): Maximum stoichiometry coefficient; if no 'stoichs'
argument is provided, all combinations of integer coefficients up
to this value will be tried.
Returns:
(exists, allowed_ratios) (tuple):
exists *bool*:
True ifc any ratio exists, otherwise False
allowed_ratios *list of tuples*:
Ratios of atoms in given oxidation
states which yield a charge-neutral structure
"""
allowed_ratios = [x for x in neutral_ratios_iter(oxidations,
stoichs=stoichs,
threshold=threshold)]
return (len(allowed_ratios) > 0, allowed_ratios)
def _isneutral(oxidations, stoichs):
"""
Check if set of oxidation states is neutral in given stoichiometry
Args:
oxidations (tuple): Oxidation states of a set of oxidised elements
stoichs (tuple): Stoichiometry values corresponding to `oxidations`
"""
return 0 == sum(map(multiply, oxidations, stoichs))
def _gcd_recursive(*args):
"""
Get the greatest common denominator among any number of ints
"""
if len(args) == 2:
print("gcd: ", gcd(*args))
return gcd(*args)
else:
return gcd(args[0], _gcd_recursive(*args[1:]))
######Testing#########
#Test calls to check if python script is behaving properly - Ed
test = Element('Be')
#Na, Ti, F
test_case1 = ['Na','Ti','F']
# test_cases = [test_case1]
# Charge neutrality + search for perovskite
max_amount = 5
# Charge neutral ratios list is empty
cn_list = []
# Iterate through each available oxidation state for each element
for ox1 in Element(test_case1[0]).oxidation_states:
for ox2 in Element(test_case1[1]).oxidation_states:
for ox3 in Element(test_case1[2]).oxidation_states:
symbols = (test_case1[0], test_case1[1], test_case1[2])
ox_states = (ox1, ox2, ox3)
print("ox_states: ", type(ox_states));
# Add charge neutral combos to list
cn_e, cn_r = neutral_ratios(ox_states, threshold = max_amount)
for i in cn_r:
cn_list.append([(element,symbol) for element,symbol in zip(symbols,i)])
# And how many are charge neutral (to be used on the next page)
print('For elements {0},'.format(test_case1))
print('There are {0} charge neutral combinations:'.format(len(cn_list)))
for i in cn_list:
# We want to make these look pretty.
# e.g. [('Na', 1), ('Ti', 1), ('F', 3)] corresponds to NaTiF3 as a chemical formula.
formula = str(i[0][0]+str(i[0][1])+i[1][0]+str(i[1][1])+i[2][0]+str(i[2][1]))
for char in formula:
formula = formula.replace('1','')
# Check for perovskite-like compositions i.e. = ABX3
if (i[0][1] == 1) and (i[1][1] == 1) and (i[2][1] == 3):
print(formula, ' <-- Woohoo! We found a 1:1:3 ratio (perovskite)!')
else:
print(formula)
print('************')
print(neutral_ratios((1,1,-1)))
print('######')
# print(_isneutral((1,1,1), ))
# We want to make these look pretty.
# e.g. [('Na', 1), ('Ti', 1), ('F', 3)] corresponds to NaTiF3 as a chemical formula.
# print ("Allowable rations for Be: ",neutral_ratios(data_loader.lookup_element_oxidation_states("Be")))