-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_mask_seg.py
257 lines (211 loc) · 10.4 KB
/
build_mask_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import random
import time
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
from tqdm import tqdm
from face_tran.utils.obj_factory import obj_factory
from face_tran.utils import utils
from convcrf import convcrf
def main(exp_dir='/data/experiments', output_dir='/data/experiments', val_dir=None, workers=4, iterations=None,
batch_size=1, seed=None, gpus=None, tensorboard=False, val_dataset=None,
pil_transforms=None, tensor_transforms=None,
arch='resnet18', cudnn_benchmark=True, use_crf=False):
# Validation
if not os.path.isdir(exp_dir):
raise RuntimeError('Experiment directory was not found: \'' + exp_dir + '\'')
# Seed
if seed is not None:
random.seed(seed)
torch.manual_seed(seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
# Check CUDA device availability
use_cuda = torch.cuda.is_available()
if use_cuda:
gpus = list(range(torch.cuda.device_count())) if not gpus else gpus
print('=> using GPU devices: {}'.format(', '.join(map(str, gpus))))
else:
gpus = None
print('=> using CPU device')
device = torch.device('cuda:{}'.format(gpus[0])) if gpus else torch.device('cpu')
# Initialize datasets
if pil_transforms is not None:
pil_transforms = [obj_factory(t) for t in pil_transforms] if type(pil_transforms) == list else pil_transforms
tensor_transforms = [obj_factory(t) for t in tensor_transforms] if tensor_transforms is not None else []
if not tensor_transforms:
tensor_transforms = [transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]
tensor_transforms = transforms.Compose(tensor_transforms)
print(val_dir, val_dataset)
val_dataset = obj_factory(val_dataset, val_dir, pil_transforms=pil_transforms,
tensor_transforms=tensor_transforms)
# Initialize data loaders
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=batch_size,
num_workers=workers)
# Create model
model = obj_factory(arch)
model.to(device)
# Load weights
checkpoint_dir = exp_dir
model_path = os.path.join(checkpoint_dir, 'model_best.pth')
if os.path.isfile(model_path):
print("=> loading checkpoint from '{}'".format(checkpoint_dir))
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint['state_dict'])
# Support multiple GPUs
if gpus and len(gpus) > 1:
model = nn.DataParallel(model, gpus)
# if input shape are the same for the dataset then set to True, otherwise False
cudnn.benchmark = cudnn_benchmark
# evaluate on validation set
validate(val_loader, model, device, val_dir, batch_size)
def validate(val_loader, model, device, val_dir, batch_size):
batch_time = utils.AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
pbar = tqdm(val_loader, unit='batches')
c = 0
new_list = []
for j, (inputs, im_names, hs, ws) in enumerate(pbar):
_, _, h, w = inputs.size()
val_inputs = inputs.to(device)
# compute output and loss
output = model(val_inputs)
# getting images and predictions as numpy arrays
pred = output.data.max(1)[1].cpu().numpy()
hs = hs.cpu().numpy()
ws = ws.cpu().numpy()
for i in range(pred.shape[0]):
mask = Image.fromarray(pred[i].astype(np.uint8))
imP = mask.convert('RGB').convert('P', palette=Image.ADAPTIVE, colors=3)
reverse_colors = np.array(imP)
# we want to exclude poor quality predictions, practically found threshold == 7000
a = np.sum(reverse_colors[reverse_colors == 1]) # face class
b = np.count_nonzero(reverse_colors == 0) # hair class
if len(np.unique(reverse_colors)) == 3 and a+b > (0.15 * h * w):
reverse_colors[reverse_colors == 0] = 3
reverse_colors[reverse_colors == 2] = 0
reverse_colors[reverse_colors == 3] = 2
imP = Image.fromarray(reverse_colors, mode='P')
imP.putpalette([
0, 0, 0, # index 0 is black (background)
0, 255, 0, # index 1 is green (face)
255, 0, 0, # index 2 is red (hair)
])
# resize to match original image
h, w = hs[i], ws[i]
imP.resize(size=(h, w))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
folder = os.path.join(val_dir, 'masks', im_names[i].split('/')[0])
if not os.path.exists(folder):
os.makedirs(folder)
path_save = os.path.join(folder, "{}.png".format(im_names[i].split('/')[-1]))
# save data we need
imP.save(path_save)
new_list.append(im_names[i])
c += 1
pbar.set_description(
'VALIDATION: Iter: {} / {}; '
'Timing: [Batch: {batch_time.val:.3f} ({batch_time.avg:.3f})]; '.format(
c, len(val_loader)*batch_size, batch_time=batch_time))
path_t = os.path.join(val_dir, 'masks.txt')
with open(path_t, 'w') as t:
for item in new_list:
t.write("%s\n" % item)
def get_labels():
"""Load the mapping that associates pascal classes with label colors
Array values could be changed according to the task and classes
Returns:
np.ndarray with dimensions (N, 3)
"""
return np.asarray(
[
[0, 0, 255], # background
[0, 255, 0], # face
[255, 0, 0], # hair
]
)
def decode_segmap(label_mask, n_classes, label_colours=get_labels()):
"""Decode segmentation class labels into a color image
Args:
label_mask (np.ndarray): an (M,N) array of integer values denoting
the class label at each spatial location.
n_classes (int): number of classes in the dataset
Returns:
(np.ndarray, optional): the resulting decoded color image.
"""
r = label_mask.copy()
g = label_mask.copy()
b = label_mask.copy()
for ll in range(1, n_classes):
r[label_mask == ll] = label_colours[ll, 0]
g[label_mask == ll] = label_colours[ll, 1]
b[label_mask == ll] = label_colours[ll, 2]
rgb = np.zeros((label_mask.shape[0], label_mask.shape[1], 3))
rgb[:, :, 0] = r # / 255.0
rgb[:, :, 1] = g # / 255.0
rgb[:, :, 2] = b # / 255.0
return rgb
if __name__ == "__main__":
# Parse program arguments
import argparse
parser = argparse.ArgumentParser('Inference of segmentation algorithms')
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser.add_argument('exp_dir',
help='path to experiment directory')
parser.add_argument('--output_dir', default=None, type=str, metavar='DIR',
help='path to directory to save predicted masks on images')
parser.add_argument('-t', '--train', type=str, metavar='DIR',
help='paths to train dataset root directory')
parser.add_argument('-v', '--val_dir', default=None, type=str, metavar='DIR',
help='paths to valuation dataset root directory')
parser.add_argument('-w', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-i', '--iterations', default=None, type=int, nargs='+', metavar='N',
help='number of iterations per resolution to run')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N', help='mini-batch size (default: 64)')
parser.add_argument('--seed', default=None, type=int, metavar='N',
help='random seed')
parser.add_argument('--gpus', default=None, nargs='+', type=int, metavar='N',
help='list of gpu ids to use (default: all)')
parser.add_argument('-tb', '--tensorboard', action='store_true',
help='enable tensorboard logging')
parser.add_argument('-crf', '--enable_crf', action='store_true',
help='enable tensorboard logging')
parser.add_argument('-vd', '--val_dataset', default=None, type=str, help='val dataset object')
parser.add_argument('-pt', '--pil_transforms', default=None, type=str, nargs='+', help='PIL transforms')
parser.add_argument('-tt', '--tensor_transforms', default=None, type=str, nargs='+', help='tensor transforms')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', # choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-cb', '--cudnn_benchmark', default=True, action='store_true',
help='if input shapes are the same for the dataset then set to True, otherwise False')
args = parser.parse_args()
main(args.exp_dir, val_dir=args.val_dir, workers=args.workers,
iterations=args.iterations, batch_size=args.batch_size,
seed=args.seed, gpus=args.gpus, tensorboard=args.tensorboard, use_crf=args.enable_crf,
val_dataset=args.val_dataset, pil_transforms=args.pil_transforms, tensor_transforms=args.tensor_transforms,
arch=args.arch, cudnn_benchmark=args.cudnn_benchmark)