forked from krrish94/nerf-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_nerf.py
404 lines (370 loc) · 15.5 KB
/
train_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import argparse
import glob
import os
import time
import numpy as np
import torch
import torchvision
import yaml
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
from nerf import (CfgNode, get_embedding_function, get_ray_bundle, img2mse,
load_blender_data, load_llff_data, meshgrid_xy, models,
mse2psnr, run_one_iter_of_nerf)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, required=True, help="Path to (.yml) config file."
)
parser.add_argument(
"--load-checkpoint",
type=str,
default="",
help="Path to load saved checkpoint from.",
)
configargs = parser.parse_args()
# Read config file.
cfg = None
with open(configargs.config, "r") as f:
cfg_dict = yaml.load(f, Loader=yaml.FullLoader)
cfg = CfgNode(cfg_dict)
# # (Optional:) enable this to track autograd issues when debugging
# torch.autograd.set_detect_anomaly(True)
# If a pre-cached dataset is available, skip the dataloader.
USE_CACHED_DATASET = False
train_paths, validation_paths = None, None
images, poses, render_poses, hwf, i_split = None, None, None, None, None
H, W, focal, i_train, i_val, i_test = None, None, None, None, None, None
if hasattr(cfg.dataset, "cachedir") and os.path.exists(cfg.dataset.cachedir):
train_paths = glob.glob(os.path.join(cfg.dataset.cachedir, "train", "*.data"))
validation_paths = glob.glob(
os.path.join(cfg.dataset.cachedir, "val", "*.data")
)
USE_CACHED_DATASET = True
else:
# Load dataset
images, poses, render_poses, hwf = None, None, None, None
if cfg.dataset.type.lower() == "blender":
images, poses, render_poses, hwf, i_split = load_blender_data(
cfg.dataset.basedir,
half_res=cfg.dataset.half_res,
testskip=cfg.dataset.testskip,
)
i_train, i_val, i_test = i_split
H, W, focal = hwf
H, W = int(H), int(W)
hwf = [H, W, focal]
if cfg.nerf.train.white_background:
images = images[..., :3] * images[..., -1:] + (1.0 - images[..., -1:])
elif cfg.dataset.type.lower() == "llff":
images, poses, bds, render_poses, i_test = load_llff_data(
cfg.dataset.basedir, factor=cfg.dataset.downsample_factor
)
hwf = poses[0, :3, -1]
poses = poses[:, :3, :4]
if not isinstance(i_test, list):
i_test = [i_test]
if cfg.dataset.llffhold > 0:
i_test = np.arange(images.shape[0])[:: cfg.dataset.llffhold]
i_val = i_test
i_train = np.array(
[
i
for i in np.arange(images.shape[0])
if (i not in i_test and i not in i_val)
]
)
H, W, focal = hwf
H, W = int(H), int(W)
hwf = [H, W, focal]
images = torch.from_numpy(images)
poses = torch.from_numpy(poses)
# Seed experiment for repeatability
seed = cfg.experiment.randomseed
np.random.seed(seed)
torch.manual_seed(seed)
# Device on which to run.
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
encode_position_fn = get_embedding_function(
num_encoding_functions=cfg.models.coarse.num_encoding_fn_xyz,
include_input=cfg.models.coarse.include_input_xyz,
log_sampling=cfg.models.coarse.log_sampling_xyz,
)
encode_direction_fn = None
if cfg.models.coarse.use_viewdirs:
encode_direction_fn = get_embedding_function(
num_encoding_functions=cfg.models.coarse.num_encoding_fn_dir,
include_input=cfg.models.coarse.include_input_dir,
log_sampling=cfg.models.coarse.log_sampling_dir,
)
# Initialize a coarse-resolution model.
model_coarse = getattr(models, cfg.models.coarse.type)(
num_encoding_fn_xyz=cfg.models.coarse.num_encoding_fn_xyz,
num_encoding_fn_dir=cfg.models.coarse.num_encoding_fn_dir,
include_input_xyz=cfg.models.coarse.include_input_xyz,
include_input_dir=cfg.models.coarse.include_input_dir,
use_viewdirs=cfg.models.coarse.use_viewdirs,
)
model_coarse.to(device)
# If a fine-resolution model is specified, initialize it.
model_fine = None
if hasattr(cfg.models, "fine"):
model_fine = getattr(models, cfg.models.fine.type)(
num_encoding_fn_xyz=cfg.models.fine.num_encoding_fn_xyz,
num_encoding_fn_dir=cfg.models.fine.num_encoding_fn_dir,
include_input_xyz=cfg.models.fine.include_input_xyz,
include_input_dir=cfg.models.fine.include_input_dir,
use_viewdirs=cfg.models.fine.use_viewdirs,
)
model_fine.to(device)
# Initialize optimizer.
trainable_parameters = list(model_coarse.parameters())
if model_fine is not None:
trainable_parameters += list(model_fine.parameters())
optimizer = getattr(torch.optim, cfg.optimizer.type)(
trainable_parameters, lr=cfg.optimizer.lr
)
# Setup logging.
logdir = os.path.join(cfg.experiment.logdir, cfg.experiment.id)
os.makedirs(logdir, exist_ok=True)
writer = SummaryWriter(logdir)
# Write out config parameters.
with open(os.path.join(logdir, "config.yml"), "w") as f:
f.write(cfg.dump()) # cfg, f, default_flow_style=False)
# By default, start at iteration 0 (unless a checkpoint is specified).
start_iter = 0
# Load an existing checkpoint, if a path is specified.
if os.path.exists(configargs.load_checkpoint):
checkpoint = torch.load(configargs.load_checkpoint)
model_coarse.load_state_dict(checkpoint["model_coarse_state_dict"])
if checkpoint["model_fine_state_dict"]:
model_fine.load_state_dict(checkpoint["model_fine_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start_iter = checkpoint["iter"]
# # TODO: Prepare raybatch tensor if batching random rays
for i in trange(start_iter, cfg.experiment.train_iters):
model_coarse.train()
if model_fine:
model_coarse.train()
rgb_coarse, rgb_fine = None, None
target_ray_values = None
if USE_CACHED_DATASET:
datafile = np.random.choice(train_paths)
cache_dict = torch.load(datafile)
ray_bundle = cache_dict["ray_bundle"].to(device)
ray_origins, ray_directions = (
ray_bundle[0].reshape((-1, 3)),
ray_bundle[1].reshape((-1, 3)),
)
target_ray_values = cache_dict["target"][..., :3].reshape((-1, 3))
select_inds = np.random.choice(
ray_origins.shape[0],
size=(cfg.nerf.train.num_random_rays),
replace=False,
)
ray_origins, ray_directions = (
ray_origins[select_inds],
ray_directions[select_inds],
)
target_ray_values = target_ray_values[select_inds].to(device)
# ray_bundle = torch.stack([ray_origins, ray_directions], dim=0).to(device)
rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
cache_dict["height"],
cache_dict["width"],
cache_dict["focal_length"],
model_coarse,
model_fine,
ray_origins,
ray_directions,
cfg,
mode="train",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
)
else:
img_idx = np.random.choice(i_train)
img_target = images[img_idx].to(device)
pose_target = poses[img_idx, :3, :4].to(device)
ray_origins, ray_directions = get_ray_bundle(H, W, focal, pose_target)
coords = torch.stack(
meshgrid_xy(torch.arange(H).to(device), torch.arange(W).to(device)),
dim=-1,
)
coords = coords.reshape((-1, 2))
select_inds = np.random.choice(
coords.shape[0], size=(cfg.nerf.train.num_random_rays), replace=False
)
select_inds = coords[select_inds]
ray_origins = ray_origins[select_inds[:, 0], select_inds[:, 1], :]
ray_directions = ray_directions[select_inds[:, 0], select_inds[:, 1], :]
# batch_rays = torch.stack([ray_origins, ray_directions], dim=0)
target_s = img_target[select_inds[:, 0], select_inds[:, 1], :]
then = time.time()
rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
H,
W,
focal,
model_coarse,
model_fine,
ray_origins,
ray_directions,
cfg,
mode="train",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
)
target_ray_values = target_s
coarse_loss = torch.nn.functional.mse_loss(
rgb_coarse[..., :3], target_ray_values[..., :3]
)
fine_loss = None
if rgb_fine is not None:
fine_loss = torch.nn.functional.mse_loss(
rgb_fine[..., :3], target_ray_values[..., :3]
)
# loss = torch.nn.functional.mse_loss(rgb_pred[..., :3], target_s[..., :3])
loss = 0.0
# if fine_loss is not None:
# loss = fine_loss
# else:
# loss = coarse_loss
loss = coarse_loss + (fine_loss if fine_loss is not None else 0.0)
loss.backward()
psnr = mse2psnr(loss.item())
optimizer.step()
optimizer.zero_grad()
# Learning rate updates
num_decay_steps = cfg.scheduler.lr_decay * 1000
lr_new = cfg.optimizer.lr * (
cfg.scheduler.lr_decay_factor ** (i / num_decay_steps)
)
for param_group in optimizer.param_groups:
param_group["lr"] = lr_new
if i % cfg.experiment.print_every == 0 or i == cfg.experiment.train_iters - 1:
tqdm.write(
"[TRAIN] Iter: "
+ str(i)
+ " Loss: "
+ str(loss.item())
+ " PSNR: "
+ str(psnr)
)
writer.add_scalar("train/loss", loss.item(), i)
writer.add_scalar("train/coarse_loss", coarse_loss.item(), i)
if rgb_fine is not None:
writer.add_scalar("train/fine_loss", fine_loss.item(), i)
writer.add_scalar("train/psnr", psnr, i)
# Validation
if (
i % cfg.experiment.validate_every == 0
or i == cfg.experiment.train_iters - 1
):
tqdm.write("[VAL] =======> Iter: " + str(i))
model_coarse.eval()
if model_fine:
model_coarse.eval()
start = time.time()
with torch.no_grad():
rgb_coarse, rgb_fine = None, None
target_ray_values = None
if USE_CACHED_DATASET:
datafile = np.random.choice(validation_paths)
cache_dict = torch.load(datafile)
rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
cache_dict["height"],
cache_dict["width"],
cache_dict["focal_length"],
model_coarse,
model_fine,
cache_dict["ray_origins"].to(device),
cache_dict["ray_directions"].to(device),
cfg,
mode="validation",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
)
target_ray_values = cache_dict["target"].to(device)
else:
img_idx = np.random.choice(i_val)
img_target = images[img_idx].to(device)
pose_target = poses[img_idx, :3, :4].to(device)
ray_origins, ray_directions = get_ray_bundle(
H, W, focal, pose_target
)
rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
H,
W,
focal,
model_coarse,
model_fine,
ray_origins,
ray_directions,
cfg,
mode="validation",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
)
target_ray_values = img_target
coarse_loss = img2mse(rgb_coarse[..., :3], target_ray_values[..., :3])
loss, fine_loss = 0.0, 0.0
if rgb_fine is not None:
fine_loss = img2mse(rgb_fine[..., :3], target_ray_values[..., :3])
loss = fine_loss
else:
loss = coarse_loss
loss = coarse_loss + fine_loss
psnr = mse2psnr(loss.item())
writer.add_scalar("validation/loss", loss.item(), i)
writer.add_scalar("validation/coarse_loss", coarse_loss.item(), i)
writer.add_scalar("validataion/psnr", psnr, i)
writer.add_image(
"validation/rgb_coarse", cast_to_image(rgb_coarse[..., :3]), i
)
if rgb_fine is not None:
writer.add_image(
"validation/rgb_fine", cast_to_image(rgb_fine[..., :3]), i
)
writer.add_scalar("validation/fine_loss", fine_loss.item(), i)
writer.add_image(
"validation/img_target",
cast_to_image(target_ray_values[..., :3]),
i,
)
tqdm.write(
"Validation loss: "
+ str(loss.item())
+ " Validation PSNR: "
+ str(psnr)
+ " Time: "
+ str(time.time() - start)
)
if i % cfg.experiment.save_every == 0 or i == cfg.experiment.train_iters - 1:
checkpoint_dict = {
"iter": i,
"model_coarse_state_dict": model_coarse.state_dict(),
"model_fine_state_dict": None
if not model_fine
else model_fine.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss,
"psnr": psnr,
}
torch.save(
checkpoint_dict,
os.path.join(logdir, "checkpoint" + str(i).zfill(5) + ".ckpt"),
)
tqdm.write("================== Saved Checkpoint =================")
print("Done!")
def cast_to_image(tensor):
# Input tensor is (H, W, 3). Convert to (3, H, W).
tensor = tensor.permute(2, 0, 1)
# Conver to PIL Image and then np.array (output shape: (H, W, 3))
img = np.array(torchvision.transforms.ToPILImage()(tensor.detach().cpu()))
# Map back to shape (3, H, W), as tensorboard needs channels first.
img = np.moveaxis(img, [-1], [0])
return img
if __name__ == "__main__":
main()