-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheot.py
102 lines (89 loc) · 4.25 KB
/
eot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from __future__ import division
from math import pi, radians, pow, sin, asin, cos
# Sources of formulas:
# [1] Position of the Sun
# https://en.wikipedia.org/wiki/Position_of_the_Sun
# Declination of the Sun as seen from Earth
# Calculations, 3rd "more accurate" formula
#
# [2] EQUATION OF TIME - PROBLEM IN ASTRONOMY
# M. Muller
# Gymnasium Munchenstein Grellingerstrasse 5,
# 4142 Munchenstein, Switzerland
# Equation of time, based on source [2]
# inputs:
# e earth orbit eccentricity (0.01671)
# p_degs projection of the axis of the earth onto the plane of the orbit in degrees (~12-15?)
# axis_norm_degs angle between the earth's axis and the norm of the orbit in degrees (23.4367)
# peri_day calendar day in January of perihelion in decimal/fractional format (~3-5)
# orb_per earth orbital period (365.25696)
# day_nums numpy array of day numbers
# outputs:
# eot_mins equation of time list in minutes
def eot_gen(e, p_degs, axis_norm_degs, peri_day, orb_per, day_nums):
eot_mins = []
time_mins = (24 * 60) / (2 * pi)
p = radians(p_degs)
axis_norm_rads = radians(axis_norm_degs)
t1 = (axis_norm_rads/2)*(1-4*pow(e, 2))
tan2_1_4e2 = (1-cos(2*t1)) / (1+cos(2*t1))
tan2 = (1-cos(axis_norm_rads)) / (1+cos(axis_norm_rads))
e2 = 2*e
tan2_2e = 2*e*tan2
tan4_1_2 = (1/2)*pow(tan2, 2)
e2_5_4 = (5/4)*(pow(e, 2))
tan4_2e = 2*e*pow(tan2, 2)
tan2_2e_13_4 = (13/4)*(pow(e, 2))*tan2
tan6_1_3 = (1/3)*pow(tan2, 3)
for d in day_nums:
m = 2*pi*((d - peri_day)/orb_per)
eot_mins.append(-(tan2_1_4e2*sin(2*(m+p))+e2*sin(m) -
tan2_2e*sin(m+2*p)+tan2_2e*sin(3*m+2*p) +
tan4_1_2*sin(4*(m+p))+e2_5_4*sin(2*m)-tan4_2e*sin((3*m)+(4*p)) +
tan4_2e*sin((5*m)+(4*p))+tan2_2e_13_4*sin(4*m+2*p) +
tan6_1_3*sin(6*(m+p)))*time_mins)
return eot_mins
# Eccentricity part of Equation of Time, based on source [2]
# this is a convenience function where axis_norm_rads is set to 0
def ecc_gen(e, p, peri_day, orb_per, day_nums):
return eot_gen(e, p, 0, peri_day, orb_per, day_nums)
# Obliquity part of Equation of Time, based on source [2]
# this is a convenience function where e is set to 0
def obl_gen(p, axis_norm_rads, peri_day, orb_per, day_nums):
return eot_gen(0, p, axis_norm_rads, peri_day, orb_per, day_nums)
# Sun's declination, based on source [1]
# inputs:
# e earth orbit eccentricity (0.01671)
# axis_norm_degs angle between the earth's axis and the norm of the orbit in degrees (23.4367)
# orb_per earth orbital period (365.25696)
# day_nums numpy array of day numbers
# p_degs projection of the axis of the earth onto the plane of the orbit in degrees
# outputs:
# decs_degs declination list in degrees
def dec_gen(e, axis_norm_degs, orb_per, day_nums, p_degs):
dec_degs = []
sin_axis_norm = sin(radians(axis_norm_degs))
ratio360 = 360 / orb_per
ratio_pi_e = (360 / pi) * e
days_btw_peri_solst = p_degs / ratio360
for d in day_nums:
d_offset = d - 1
dec_degs.append(-(asin(sin_axis_norm *
cos(radians(ratio360*(d_offset+(days_btw_peri_solst-2)) +
ratio_pi_e*sin(radians(ratio360*(d_offset-2))))))*360/(2*pi)))
return dec_degs
# Analemma Data
# inputs:
# e earth orbit eccentricity (0.01671)
# p_degs projection of the axis of the earth onto the plane of the orbit in degrees (12.25)
# axis_norm_degs angle between the earth's axis and the norm of the orbit in degrees (23.4367)
# peri_day calendar day in January of perihelion in decimal/fractional format (~3-5)
# orb_per earth orbital period (365.25696)
# day_nums numpy array of day numbers
# outputs:
# eot_mins equation of time list in minutes
# dec_degs declination list in degrees
def analemma_gen(e, p_degs, axis_norm_degs, peri_day, orb_per, day_nums):
dec_degs = dec_gen(e, axis_norm_degs, orb_per, day_nums, p_degs)
eot_mins = eot_gen(e, p_degs, axis_norm_degs, peri_day, orb_per, day_nums)
return eot_mins, dec_degs