Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

matlab lqr函数和自己迭代计算riccati求解的P 不同,不知道该用哪一个? #6

Open
helianthus000 opened this issue Dec 13, 2021 · 1 comment

Comments

@helianthus000
Copy link

helianthus000 commented Dec 13, 2021

车参数:

cf=-110000;
cr=cf;
m=2108; 
Iz=1585.3;
a=1.47;
b=2.97-a;
k=zeros(1,4);
i=1;
vx=0.01*i;
A=[1,1,0,0;
    1,(cf+cr)/(m*vx),-(cf+cr)/m,(a*cf-b*cr)/(m*vx);
    0,0,0,1;
    0,(a*cf-b*cr)/(Iz*vx),-(a*cf-b*cr)/Iz,(a*a*cf+b*b*cr)/(Iz*vx)];
B=[0;
    -cf/m;
    0;
    -a*cf/Iz];
Q=1*eye(4);
R=10;

自己写的迭代函数:

`function [K2,P] = lqrtest(A, B, Qx, Ru)

%--------------------------------------------------------------------------
% P matrix calculation:
P=Qx;
iteration_num=1;
max_num_iteration=20000;
tolerance = [0 0 0 0;0 1 1 1;0 1 1 1;0 1 1 1];
err = 2*ones(4,4);
while(err >= tolerance &  iteration_num < max_num_iteration)
    
    iteration_num=iteration_num+1;
    P_1 =  Qx + A'*P*A - A'*P*B*(Ru+B'*P*B)^(-1)*B'*P*A;
    err = abs(P_1 - P);
    if sum(sum(isnan(P_1)))
        break;
    end
    P = P_1;
end
% gain K matrix calculation:
K2 = inv(Ru + B'*P*B)*(B'*P*A);
end

[k,P]=lqr(A,B,Q,R) % 使用matlab自带函数

[k,P]=lqrtest(A,B,Q,R) %使用迭代求解riccati方程求P

两种方法算出来的解是不一样的,那我用迭代法的解是不是就不可以啊?

@xiejingjacob
Copy link

车参数:

cf=-110000;
cr=cf;
m=2108; 
Iz=1585.3;
a=1.47;
b=2.97-a;
k=zeros(1,4);
i=1;
vx=0.01*i;
A=[1,1,0,0;
    1,(cf+cr)/(m*vx),-(cf+cr)/m,(a*cf-b*cr)/(m*vx);
    0,0,0,1;
    0,(a*cf-b*cr)/(Iz*vx),-(a*cf-b*cr)/Iz,(a*a*cf+b*b*cr)/(Iz*vx)];
B=[0;
    -cf/m;
    0;
    -a*cf/Iz];
Q=1*eye(4);
R=10;

自己写的迭代函数:

`function [K2,P] = lqrtest(A, B, Qx, Ru)

%--------------------------------------------------------------------------
% P matrix calculation:
P=Qx;
iteration_num=1;
max_num_iteration=20000;
tolerance = [0 0 0 0;0 1 1 1;0 1 1 1;0 1 1 1];
err = 2*ones(4,4);
while(err >= tolerance &  iteration_num < max_num_iteration)
    
    iteration_num=iteration_num+1;
    P_1 =  Qx + A'*P*A - A'*P*B*(Ru+B'*P*B)^(-1)*B'*P*A;
    err = abs(P_1 - P);
    if sum(sum(isnan(P_1)))
        break;
    end
    P = P_1;
end
% gain K matrix calculation:
K2 = inv(Ru + B'*P*B)*(B'*P*A);
end

[k,P]=lqr(A,B,Q,R) % 使用matlab自带函数 和 [k,P]=lqrtest(A,B,Q,R) %使用迭代求解riccati方程求P

两种方法算出来的解是不一样的,那我用迭代法的解是不是就不可以啊?

你这个tolerance设置的太大了,求不到最优解,你尝试把tolerance 调成 10-4

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants