-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
43 lines (34 loc) · 1.14 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from PIL import Image
import torch
from io import BytesIO
import lmdb
class Dataset(torch.utils.data.Dataset):
def __init__(self ,
path ,
transform ,
resolution = 256):
super(Dataset , self).__init__()
self.env = lmdb.open(
path ,
max_readers=32 ,
readonly=True ,
lock=False ,
meminit=False
)
if not self.env:
raise IOError("Cannot open dataset" , path)
with self.env.begin(write=False) as t:
self.length = int(t.get('length'.encode('utf-8')).decode('utf-8'))
self.resolution = resolution
self.transform = transform
def __len__(self):
return self.length
def __getitem__(self , idx):
with self.env.begin(write=False) as txn:
key = f'{self.resolution}-{str(idx).zfill(5)}'.encode('utf-8')
img_bytes = txn.get(key)
buffer = BytesIO(img_bytes)
img = Image.open(buffer)
if self.transform:
img = self.transform(img)
return img