comments | difficulty | edit_url |
---|---|---|
true |
中等 |
检查子树。你有两棵非常大的二叉树:T1,有几万个节点;T2,有几万个节点。设计一个算法,判断 T2 是否为 T1 的子树。
如果 T1 有这么一个节点 n,其子树与 T2 一模一样,则 T2 为 T1 的子树,也就是说,从节点 n 处把树砍断,得到的树与 T2 完全相同。
示例1:
输入:t1 = [1, 2, 3], t2 = [2] 输出:true
示例2:
输入:t1 = [1, null, 2, 4], t2 = [3, 2] 输出:false
提示:
- 树的节点数目范围为[0, 20000]。
我们首先判断 true
。
否则,判断 false
。
接着,我们判断 true
。否则,我们递归判断 true
,那么 true
。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def checkSubTree(self, t1: TreeNode, t2: TreeNode) -> bool:
def dfs(t1, t2):
if t2 is None:
return t1 is None
if t1 is None or t1.val != t2.val:
return False
return dfs(t1.left, t2.left) and dfs(t1.right, t2.right)
if t2 is None:
return True
if t1 is None:
return False
if dfs(t1, t2):
return True
return self.checkSubTree(t1.left, t2) or self.checkSubTree(t1.right, t2)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean checkSubTree(TreeNode t1, TreeNode t2) {
if (t2 == null) {
return true;
}
if (t1 == null) {
return false;
}
if (dfs(t1, t2)) {
return true;
}
return checkSubTree(t1.left, t2) || checkSubTree(t1.right, t2);
}
private boolean dfs(TreeNode t1, TreeNode t2) {
if (t2 == null) {
return t1 == null;
}
if (t1 == null || t1.val != t2.val) {
return false;
}
return dfs(t1.left, t2.left) && dfs(t1.right, t2.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool checkSubTree(TreeNode* t1, TreeNode* t2) {
if (!t2) {
return true;
}
if (!t1) {
return false;
}
if (dfs(t1, t2)) {
return true;
}
return checkSubTree(t1->left, t2) || checkSubTree(t1->right, t2);
}
bool dfs(TreeNode* t1, TreeNode* t2) {
if (!t2) {
return !t1;
}
if (!t1 || t1->val != t2->val) {
return false;
}
return dfs(t1->left, t2->left) && dfs(t1->right, t2->right);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func checkSubTree(t1 *TreeNode, t2 *TreeNode) bool {
var dfs func(t1, t2 *TreeNode) bool
dfs = func(t1, t2 *TreeNode) bool {
if t2 == nil {
return t1 == nil
}
if t1 == nil || t1.Val != t2.Val {
return false
}
return dfs(t1.Left, t2.Left) && dfs(t1.Right, t2.Right)
}
if t2 == nil {
return true
}
if t1 == nil {
return false
}
if dfs(t1, t2) {
return true
}
return checkSubTree(t1.Left, t2) || checkSubTree(t1.Right, t2)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function checkSubTree(t1: TreeNode | null, t2: TreeNode | null): boolean {
const dfs = (t1: TreeNode | null, t2: TreeNode | null): boolean => {
if (!t2) {
return !t1;
}
if (!t1 || t1.val !== t2.val) {
return false;
}
return dfs(t1.left, t2.left) && dfs(t1.right, t2.right);
};
if (!t2) {
return true;
}
if (!t1) {
return false;
}
if (dfs(t1, t2)) {
return true;
}
return checkSubTree(t1.left, t2) || checkSubTree(t1.right, t2);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(t1: &Option<Rc<RefCell<TreeNode>>>, t2: &Option<Rc<RefCell<TreeNode>>>) -> bool {
match (t1, t2) {
(Some(node1), Some(node2)) => {
let n1 = node1.borrow();
let n2 = node2.borrow();
n1.val == n2.val
&& Solution::dfs(&n1.left, &n2.left)
&& Solution::dfs(&n1.right, &n2.right)
}
(None, Some(_)) => false,
(Some(_), None) => false,
_ => true, // Both are None
}
}
pub fn check_sub_tree(
t1: Option<Rc<RefCell<TreeNode>>>,
t2: Option<Rc<RefCell<TreeNode>>>,
) -> bool {
match (t1, t2) {
(Some(node1), Some(node2)) => {
let n1 = node1.borrow();
let n2 = node2.borrow();
Solution::dfs(&Some(Rc::clone(&node1)), &Some(Rc::clone(&node2)))
|| Solution::check_sub_tree(n1.left.clone(), Some(Rc::clone(&node2)))
|| Solution::check_sub_tree(n1.right.clone(), Some(Rc::clone(&node2)))
}
(Some(_), None) => true,
(None, Some(_)) => false,
_ => true, // Both are None or t1 is None
}
}
}
/* class TreeNode {
* var val: Int
* var left: TreeNode?
* var right: TreeNode?
*
* init(_ val: Int, _ left: TreeNode? = nil, _ right: TreeNode? = nil) {
* self.val = val
* self.left = left
* self.right = right
* }
* }
*/
class Solution {
func checkSubTree(_ t1: TreeNode?, _ t2: TreeNode?) -> Bool {
if t2 == nil {
return true
}
if t1 == nil {
return false
}
if isSameTree(t1, t2) {
return true
}
return checkSubTree(t1!.left, t2) || checkSubTree(t1!.right, t2)
}
private func isSameTree(_ t1: TreeNode?, _ t2: TreeNode?) -> Bool {
if t1 == nil && t2 == nil {
return true
}
if t1 == nil || t2 == nil {
return false
}
if t1!.val != t2!.val {
return false
}
return isSameTree(t1!.left, t2!.left) && isSameTree(t1!.right, t2!.right)
}
}