-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOmicsConfig.py
27 lines (24 loc) · 1.18 KB
/
OmicsConfig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from transformers import PretrainedConfig
from transformers import PretrainedConfig, PreTrainedModel
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GATv2Conv
from torch_geometric.data import Batch
from torch.utils.data import DataLoader
from torch.optim import AdamW
from torch_geometric.utils import negative_sampling
from torch.nn.functional import cosine_similarity
from torch.optim.lr_scheduler import StepLR
class OmicsConfig(PretrainedConfig):
model_type = "omics-graph-network"
def __init__(self, in_channels=768, edge_attr_channels=128, out_channels=128, original_feature_size=768, learning_rate=0.01, num_layers=1, edge_decoder_hidden_sizes=[128], edge_decoder_activations=['ReLU'], **kwargs):
super().__init__(**kwargs)
self.in_channels = in_channels
self.edge_attr_channels = edge_attr_channels
self.out_channels = out_channels
self.original_feature_size = original_feature_size
self.learning_rate = learning_rate
self.num_layers = num_layers
self.edge_decoder_hidden_sizes = edge_decoder_hidden_sizes
self.edge_decoder_activations = edge_decoder_activations