-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnonogram.py
193 lines (175 loc) · 5.02 KB
/
nonogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
'''
Created on Sep 28, 2018
@author: silvan de boer
'''
import numpy as np
class Nonogram(object):
# Puzzle definitions
def __init__(self, puzzleName):
self.evaluationCount = 0
self.puzzle = puzzles[puzzleName]
# Puzzle properties
def puzzleDims(self):
return (len(self.puzzle['raw'][0]),
len(self.puzzle['raw'][1]))
def puzzleVolume(self):
return sum([sum(x) for x in self.puzzle['raw'][0]])
def evaluateDirect(self, phenotype):
self.evaluationCount+=1
return sum([phenotype[x][y] != self.puzzle['solution'][x][y]
for x in range(5) for y in range(5)])
def evaluate(self, phenotype):
self.evaluationCount += 1
fitness = 0
nRows, mColumns = self.puzzle['dims']
puzzle = self.puzzle['raw']
phenotype = np.array(phenotype)
# rows
for r in range(0, nRows):
seriesPuzzle = np.array(puzzle[0][r])
seriesPheno = self.getSeries(phenotype[r])
fitness += self.compareSeries(seriesPuzzle, seriesPheno)
# columns
for c in range(0, mColumns):
seriesPuzzle = np.array(puzzle[1][c])
seriesPheno = self.getSeries(phenotype[:,c])
fitness += self.compareSeries(seriesPuzzle, seriesPheno)
return fitness
def compareSeries(self, s1, s2):
minLen = min(len(s1), len(s2))
s1Compare = np.array(s1[:minLen])
s2Compare = np.array(s2[:minLen])
return np.sum(np.abs(s1Compare - s2Compare)) + np.sum(s1[minLen:]) + np.sum(s2[minLen:])
def getSeries(self, row):
row = np.append(row, 0) # makes sure the last series is included
series = np.array([])
thisLen = 0
for i in range(0, len(row)):
if row[i] == 1:
thisLen += 1
else:
if thisLen > 0:
series = np.append(series, thisLen)
thisLen = 0
return series
def printPhenotype(phenotype):
str = ''
for r in phenotype:
for c in r:
if c == 1:
str += '[]'
else:
str += ".."
str += "\n"
print str
puzzles = {
'small' : {
'raw' : (
[[2],[3],[4],[2,1],[1]],
[[4],[4],[3],[1],[1]]),
'dims' : (5,5),
'volume' : 13,
'solution' : [
[0,1,1,0,0],
[1,1,1,0,0],
[1,1,1,1,0],
[1,1,0,0,1],
[1,0,0,0,0]]},
'larger' : {
'source' : 'http://www.nonograms.org/nonograms/i/20745',
'raw' :
([
[6,6],
[4,1,2,3,1,3],
[2,1,1,1,2,2,1,1,3],
[2,1,1,14,1,2],
[1,1,1,1,4,1,1,1],
[2,1,5,2,3,1,2],
[3,1,3,1,1,1,1,6],
[6,4,1,1,4],
[2,2],
[7,1,5,1,7],
[2,3,4,1,3,2],
[1,1,1,5,1,1,1],
[1,1,1,2,2,1,1,1],
[32]
], [
[4],
[2,3],
[2,1,2,4],
[1,1,1,1,2,1],
[3,2,1,2],
[2,1,1,1,1],
[1,1,2,1,1],
[2,1,1,2],
[1,1,2,2,1],
[2,1,6],
[2,1,2,1,2],
[2,1,1,1,1,1],
[1,3,1],
[1,1,1],
[2,1,1],
[1,3,1],
[1,2,3,1],
[1,3,1],
[1,1,1,1],
[1,2,1,1,1],
[1,1,1],
[2,1],
[1,1,1],
[1,3,1],
[4,1,1,1,1],
[2,1,2,1,2],
[1,1,6],
[2,2,2,1],
[1,1,1,2],
[1,1,2,1,1],
[2,1,1,1],
[1,1,1,1,1,2],
[2,1,2,2,1],
[2,1,1,4],
[2,3],
[4]
]),
'dims' : (14, 36),
'volume' : 214},
'medium' : {
'source' : 'http://www.nonograms.org/nonograms/i/20685',
'raw' :
([
[2],
[8],
[3,2,4],
[2,2,1,2],
[1,2,2,1],
[5,1,2],
[5,1,1],
[6,1],
[1,5],
[2],
[1],
[2],
[1,1],
[2,2],
[2,3,1,2]
],[
[3],
[2,1,1],
[1,1,1],
[2,2],
[1,3,3],
[1,2,1,3,2],
[3,4,1],
[3,2,2],
[2,1,2],
[4,1],
[2,5,1],
[1,2],
[2,1,1],
[3,1,1],
[4]
]),
'dims' : (15, 15),
'volume' : 79
}
}