-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·65 lines (51 loc) · 2.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import cfg
import sys
sys.path.append('./network')
import net as NET
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--ckpt", dest="checkpoint_path", default="", type=str,metavar="FILE", help='model checkpoint path')
args = parser.parse_args()
net = NET.Luo(mode='TRAIN')
with tf.Session() as sess:
saver = tf.train.Saver()
summary_writer = tf.summary.FileWriter('./log',sess.graph)
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord=coord)
global_step = 0
ckpt = tf.train.get_checkpoint_state('./models')
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess,ckpt.model_checkpoint_path)
print 'model restored from:'+ckpt.model_checkpoint_path
global_step = sess.run(net.global_step)
for i in range(cfg.param.train_iter):
runs = [net.merged,
net.train_op,
net.global_step,
net.loss,
net.accuracy,
net.predictions,
net.gt ]
merged_summary,_,global_step,loss,acc,p,gt = sess.run(runs)
summary_writer.add_summary(merged_summary,global_step=global_step)
print 'step:%d\tloss:%.2f\tacc:%.4f\terr:%.1f'%(global_step,loss,acc,np.mean(np.abs(gt-p)))
if global_step%cfg.param.save_iter == 0:
save_path = cfg.param.model_save_path.format('Luo',global_step)
saver.save(sess,save_path)
print 'model saved to:{}!'.format(save_path)
if global_step%cfg.param.test_iter==0:
test_runs = [net.loss,
net.accuracy,
net.predictions,
net.gt ]
loss,acc,p,gt = sess.run(test_runs,feed_dict={net.mode:False})
print 'testing:'
print 'step:%d\tloss:%.2f\tacc:%.4f\terr:%.1f'%(global_step,loss,acc,np.mean(np.abs(gt-p)))
print np.abs(p-gt)
coord.request_stop()
coord.join(threads)