-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchainlit_app.py
222 lines (204 loc) · 7.79 KB
/
chainlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from typing import Optional
import chainlit as cl
import httpx
from chainlit.input_widget import Slider, Select, Switch, TextInput, Tags
from openai import AsyncOpenAI
openai_models = [
"o1-preview", "o1-mini",
"gpt-4o-mini", "gpt-4o",
"gpt-4", "gpt-4-turbo",
"gpt-3.5-turbo",
]
async def create_client(base_url, api_key, http_proxy):
client = AsyncOpenAI(
base_url=base_url,
api_key=api_key,
http_client=httpx.AsyncClient(
verify=False,
proxies={"all://": http_proxy[0]},
) if http_proxy else None,
)
return client
async def get_model_list(client):
res = await client.models.list()
model_ids = []
for model_list in res:
if model_list[0] == 'data':
models = model_list[1]
model_ids += [model.id for model in models]
break
print(model_ids)
return model_ids
async def create_settings(settings):
chat_settings = cl.ChatSettings(
[
TextInput(
id="base_url",
label="OPENAI_BASE_URL",
initial=settings.get("base_url"),
),
TextInput(
id="http_proxy",
label="http_proxy",
initial=settings.get("http_proxy"),
),
TextInput(
id="api_key",
label="OPENAI_API_KEY",
initial=settings.get("api_key"),
),
Select(
id="model",
label="model",
values=settings.get("models"),
initial_index=0,
tooltip="ID of the model to use. You can use the List models API to see all of your available models."
),
Switch(
id="stream",
label="stream",
initial=settings.get("stream"),
tooltip=
"Whether to stream back partial progress. If set, tokens will be sent as data-only "
"server-sent events as they become available, with the stream terminated by a data: [DONE] message.",
),
Slider(
id="max_tokens",
label="max_tokens",
initial=settings.get("max_tokens"),
min=64,
max=131072, # 128k
step=1,
tooltip=
"The maximum number of tokens that can be generated in the completion.\n"
"The token count of your prompt plus max_tokens cannot exceed the model's context length.",
),
Slider(
id="temperature",
label="temperature",
initial=settings.get("temperature"),
min=0,
max=1,
step=0.01,
tooltip=
"What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more "
"random, while lower values like 0.2 will make it more focused and deterministic.\n"
"We generally recommend altering this or top_p but not both.",
),
Slider(
id="top_p",
label="top_p",
initial=settings.get("top_p"),
min=0,
max=1,
step=0.01,
tooltip=
"An alternative to sampling with temperature, called nucleus sampling, where the model considers the "
"results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top "
"10% probability mass are considered.\n"
"We generally recommend altering this or temperature but not both.",
),
Slider(
id="frequency_penalty",
label="frequency_penalty",
initial=settings.get("frequency_penalty"),
min=0,
max=2,
step=0.01,
tooltip=
"Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing "
"frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.",
),
Slider(
id="presence_penalty",
label="presence_penalty",
initial=settings.get("presence_penalty"),
min=-2,
max=2,
step=0.01,
tooltip=
"Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear "
"in the text so far, increasing the model's likelihood to talk about new topics.",
),
Tags(
id="stop",
label="stop",
initial=settings.get("stop"),
values=[],
tooltip=
"Up to 4 sequences where the API will stop generating further tokens. "
"The returned text will not contain the stop sequence.",
)
]
)
return chat_settings
@cl.on_chat_start
async def start():
cl.user_session.set("message_history", [], )
if cl.user_session.get("chat_settings"):
init_settings = cl.user_session.get("chat_settings")
else:
base_url = "https://api.openai.com/v1"
cl.user_session.set("base_url", base_url)
init_settings = {
"base_url": base_url,
"http_proxy": None,
"api_key": "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
"models": openai_models,
"stream": True,
"max_tokens": 512,
"temperature": 0.7,
"top_p": 0.3,
"frequency_penalty": 0.7,
"presence_penalty": 0.4,
"stop": [],
}
chat_settings = await create_settings(init_settings)
settings = await chat_settings.send()
cl.user_session.set("chat_settings", settings)
@cl.on_settings_update
async def settings_update(settings):
base_url = cl.user_session.get("base_url")
print(f"base_url: {base_url}")
base_url_update = settings.get("base_url")
print(f"base_url_update: {base_url_update}")
# If the API address changes, retrieve the model list again.
if base_url != base_url_update:
api_key = settings.get('api_key')
http_proxy = settings.get('http_proxy')
client = await create_client(base_url_update, api_key, http_proxy)
models = await get_model_list(client)
settings["models"] = models
chat_settings = await create_settings(settings)
await chat_settings.send()
cl.user_session.set("base_url", base_url_update)
cl.user_session.set("settings", settings)
print("on_settings_update", settings)
@cl.on_message
async def main(message: cl.Message):
message_history = cl.user_session.get("message_history")
message_history.append({"role": "user", "content": message.content})
msg = cl.Message(content="")
await msg.send()
chat_settings = cl.user_session.get("chat_settings")
print(chat_settings)
settings = chat_settings.copy()
base_url = settings.pop('base_url')
api_key = settings.pop('api_key')
http_proxy = settings.pop('http_proxy')
print(settings)
client = await create_client(base_url, api_key, http_proxy)
completion = await client.chat.completions.create(
messages=message_history, **settings
)
stream = settings.get('stream')
if stream:
async for part in completion:
if token := part.choices[0].delta.content or "":
await msg.stream_token(token)
else:
content = completion.choices[0].message.content
msg = cl.Message(content=content)
await msg.send()
message_history.append({"role": "assistant", "content": msg.content})
await msg.update()