forked from arijitporia/Bayesian_CNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBCNN.py
61 lines (52 loc) · 2.84 KB
/
BCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 22 07:37:42 2019
@author: Arijit Poria
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import warnings
warnings.filterwarnings('ignore')
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import tensorflow_probability as tfp
mnist_conv = input_data.read_data_sets('D:/PPM/',reshape=False ,one_hot=False)
mnist_conv_onehot = input_data.read_data_sets('D:/PPM/',reshape=False ,one_hot=True)
images = tf.placeholder(tf.float32,shape=[None,28,28,1])
labels = tf.placeholder(tf.float32,shape=[None,])
hold_prob = tf.placeholder(tf.float32)
# define the model
neural_net = tf.keras.Sequential([
tfp.layers.Convolution2DReparameterization(32, kernel_size=3, padding="SAME", activation=tf.nn.relu),
# tf.keras.layers.MaxPooling2D(pool_size=[2, 2], strides=[2, 2], padding="SAME"),
tfp.layers.Convolution2DReparameterization(64, kernel_size=3, padding="SAME", activation=tf.nn.relu),
# tf.keras.layers.MaxPooling2D(pool_size=[2, 2], strides=[2, 2], padding="SAME"),
tf.keras.layers.Flatten(),
tfp.layers.DenseFlipout(32, activation=tf.nn.relu),
# tf.keras.layers.Dropout(hold_prob),
tfp.layers.DenseFlipout(10)])
logits = neural_net(images)
# Compute the -ELBO as the loss, averaged over the batch size.
labels_distribution = tfp.distributions.Categorical(logits=logits)
neg_log_likelihood = -tf.reduce_mean(labels_distribution.log_prob(labels))
kl = sum(neural_net.losses) / mnist_conv.train.num_examples
elbo_loss = neg_log_likelihood + kl
optimizer = tf.train.AdamOptimizer()
train_op = optimizer.minimize(elbo_loss)
# Build metrics for evaluation. Predictions are formed from a single forward
# pass of the probabilistic layers. They are cheap but noisy predictions.
predictions = tf.argmax(logits, axis=1)
accuracy, accuracy_update_op = tf.metrics.accuracy(labels=labels, predictions=predictions)
learning_rate = 0.005 #initial learning rate
max_step = 1500 #number of training steps to run
batch_size = 150 #batch size
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
with tf.Session() as sess:
sess.run(init_op)
for step in range(max_step+1):
images_b, labels_b = mnist_conv.train.next_batch(batch_size)
images_h, labels_h = mnist_conv.validation.next_batch(mnist_conv.validation.num_examples)
sess.run([train_op, accuracy_update_op], feed_dict={images: images_b,labels: labels_b,hold_prob:0.5})
if (step==0) | (step % 1500 == 0):
loss_value, accuracy_value = sess.run([elbo_loss, accuracy], feed_dict={images: images_b,labels: labels_b,hold_prob:0.5})
print("Step: {:>3d} Loss: {:.3f} Accuracy: {:.3f}".format(step, loss_value, accuracy_value))